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We generalize the Fortuin-Kasteleyn (FK) cluster representation of the parti- 
tion function of the Ising model to represent the partition function of quantum 
spin models with an arbitrary spin magnitude in arbitrary dimensions. This 
generalized representation enables us to develop a new cluster algorithm for the 
simulation of quantum spin systems by the worldline Monte Carlo method. 
Because the Swendsen-Wang algorithm is based on the FK representation, the 
new cluster algorithm naturally includes it as a special case. As well as the 
general description of the new representation, we present an illustration of 
our new algorithm for some special interesting cases: the Ising model, the 
antiferromagnetic Heisenberg model with S =  1, and a general Heisenberg 
model. The new algorithm is applicable to models with any range of the 
exchange interaction, any lattice geometry, and any dimensions. 

KEY WORDS: Quantum Monte Carlo; cluster algorithm; XXZ model; 
Heisenberg model; X Y  model. 

1. I N T R O D U C T I O N  

In 1987, Swendsen and Wang ~l) used the Fortuin and Kasteleyn (FK) 
representation t2) of the partition function of Ising models in a Monte Carlo 
simulation of these models. With this representation, they were able to 
produce an algorithm whose key feature was the global updating of Ising 
spin configurations in contrast to the local updating in the standard 
Metropolis algorithm. With global updating, their cluster algorithm greatly 
reduced the autecorrelation times in the simulation near a critical point. 
Since then, several attempts have been made (see ref. 3 for a brief review) 
to reduce autocorrelation times of various systems by various forms of 
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cluster algorithms, and recently the construction of a cluster algorithm has 
been formulated on more general grounds, t4-7~ Still, most applications of 
cluster algorithms have been restricted to classical models. 

In this paper, we discuss cluster algorithms for worldline Monte Carlo 
(WLMC) simulations of general classes of quantum spin systems. For most 
quantum spin systems, exact knowledge of the properties of the systems is 
very restricted. To obtain information of a wider range, one often resorts 
to numerical methods such as exact diagonalization, expansions with 
respect to small parameters, and quantum Monte Carlo methods. Among 
these, only quantum Monte Carlo methods are available for relatively large 
systems. Several variants of the quantum Monte Carlo simulation exist: 
the Green's function Monte Carlo (GFMC) method, ~8) the projector 
Monte Carlo method, 19) the auxiliary-field method based on Hubbard-  
Stratonovich transformation, ~~ Handscomb's method, ~1) and the world- 
line Monte Carlo method based on the Suzuki-Trotter (ST) approxima- 
tion. ~'-~ For the study of ground-state properties, the GFMC is particularly 
useful. The auxiliary-field method is powerful for Hubbard models and 
related problems. Handscomb's method lacks the systematic error caused 
by the ST approximation. The WLMC has enjoyed a wide range of appli- 
cability to fermion, boson, and quantum spin models. For various models, 
it is the simplest and perhaps the most widely known. 

For fermion problems and frustrated spin systems, the main difficulty 
shared by all the above-mentioned methods is the well-known negative sign 
problem. In some special cases, one of the methods can be particularly use- 
ful compared to others, as is the case for the auxiliary field method applied 
to the Hubbard model with particle-hole symmetry. However, for many 
other models, such as frustrated spin models, the WLMC is commonly 
used because no other method is particularly efficient in reducing the dif- 
ficulty. In this paper, we do not address the sign problem. We will rather 
focus on another difficulty which has been underappreciated. The WLMC 
suffers from long autocorrelation times even when the system is not near a 
finite-temperature critical point. ~3~ Although a similar problem may exist 
for the other quantum Monte Carlo techniques, this problem has not yet 
been studied systematically. One way to overcome this difficulty is to 
develop a cluster updating as in the SW method. In this paper we present 
the details of such a method. 

In general, it is nontrivial to find a cluster algorithm. The generalized 
approaches, ~4-7) however, provide a starting point. They first require the 
specification of a proper set of local graphs by which the whole system is 
decomposed into clusters and also require a nonnegative solution to a 
system of linear equations (weight equations) that is often underdeter- 
mined. Little a priori guidance is given on the construction of these graphs, 
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and even the existence of a nonnegative solution is not guaranteed. 
Nevertheless, solutions exist in some simple cases. The Swendsen-Wang 
(SW) algorithm, for instance, is one such case. Here, the number of weight 
equations is only two, as is the number of independent variables. A slightly 
more complicated case is the loop algorithm ~14''5) for the six-vertex model. 
In the massless case, for example, both the number of equations and the 
number of variables are three. This algorithm was successfully applied in a 
WLMC simulation of the spin-l/2 antiferromagnetic Heisenberg model (16~ 
because the S = 1/2 quantum spin systems can be mapped to the six-vertex 
model by using ST approximation. "2) This particular algorithm can also be 
viewed as the simplest example of the general method that we present in 
this paper. 

For a general quantum spin system, the number of the weight equa- 
tions and independent variables can be very large. As we will see below, 
even in the next simplest case, the case of the XY-like X X Z  model, is 
already somewhat difficult to handle, as the number of the equations is 
seven, whereas the number of the variables is I 1. Here, it does not seem 
guaranteed that a meaningful solution exists. In fact, however, at least one 
meaningful solution exists for any system regardless of the magnitude of 
spins or the coupling constants. This rather surprising result is what we will 
present in this paper as well as a practical method for obtaining the solu- 
tion. Instead of working on the complicated weight equation itself, we will 
take another approach which naturally leads to a proper choice of graphs 
and a solution of the equations; that is, we will generalize the FK cluster 
representation of the Boltzmann weight of Ising models to the quantum 
models. We thereby propose a new algorithm which potentially reduces the 
autocorrelation times greatly. We have already applied the new algorithm 
to the S =  1 antiferromagnetic Heisenberg chain, (17) reducing some auto- 
correlation times by as much as four orders of magnitude. These algorithms 
differ from previous attempts ~s~ to generalize the FK transformation in 
that they produce clusters whose states can naturally be specified by a 
single variable and can be changed independently. In this paper, we present 
the details of the construction of the algorithm. 

It is useful to outline the algorithm before the detailed explanations 
and the mathematical proofs. The lattice on which we will work is not the 
original lattice on which the quantum problem is defined. Instead, we will 
consider many lattices, each of which is geometrically equivalent to the 
original lattice, and take this set of lattices as a hyperlattice which has a 
dimension one greater than the dimension of the original model. This 
hyperlattice can also be viewed as a collection of local units which we call 
plaquettes and links. One Monte Carlo step of the new algorithm consists 
of a labeling process applied to the plaquettes and a flipping process for 
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clusters formed by these labels. In the labeling process, we assign a label, 
i.e., a graph, stochastically to each local unit. More specifically, in each 
local unit, we connect vertices by edges which are chosen probabilistically. 
After this graph assignment is done for all plaquettes, the union of all local 
graphs forms a global graph defined for the entire lattice: the connected 
vertices form clusters and these clusters constitute the global graph. In 
the flipping process, each cluster is flipped randomly with probability 1/2. 
The question to be answered is how do we obtain the local graphs and the 
labeling probabilities. 

In this paper, we will develop various notations and definitions needed 
to describe our algorithm without ambiguity. To this end, in Section 2 we 
first summarize the general framework of cluster representation and cluster 
algorithm, and then we illustrate how a problem fits into this general 
framework by presenting two examples, the SW algorithm for the Ising 
model and the S = 1 antiferromagnetic Heisenberg chain. These examples 
will not only illustrate the notation, but also give a peek at the generaliza- 
tion of the FK representation and the Monte Carlo algorithms that we will 
derive from it. After these examples, formal definitions for the words intro- 
duced in the examples will be given in Section 3. In this section, we also 
present, without derivation, the new cluster representation for the general 
X X Z  models. Section 4 is the essential part of this paper. In this section, we 
will show how to obtain a solution of the weight equation for the general 
X X Z  spin model. We also propose a practical method for computing the 
solution. In Section 5 we present the compact formula for the solution of 
the weight equation for the Heisenberg models. In Section 6 the ergodicity 
of the new algorithm is discussed. Section 7 is a brief summary. We also 
discuss a further generalization of our results to the X Y Z  models in the 
Appendix. 

2. FRAMEWORK AND EXAMPLES 

In this section, we first show how the FK-type representation of the 
partition function is used in a Monte Carlo simulation and then present 
two pedagogical examples to introduce symbols and notation which we will 
use in the subsequent sections to generalize the FK representation and to 
develop the new algorithms. 

2.1. The Cluster Representation 

In general, the partition function of a lattice spin system is the sum of 
some weight function over all possible "spin configurations" 

Z = ~  W(n) (2.1) 
n 
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where 

n =-- ( n l ,  n 2 ..... nNv ) (2.2) 

denotes a set of one-bit variables each of which takes a value 0 or 1. This 
type of configurational summation is the case even with quantum spin 
systems when they are mapped by the ST decomposition to problems with 
classical degrees of freedom. Here, we are considering Nv vertices, which 
are lattice points in the case of the Ising model, but will not necessarily be 
lattice points in the more general cases discussed below. In the subsequent 
sections, we will show that this weight function W(n) itself can be expressed 
as a sum of another weight function over a variable different from the "spin 
configurations" n, 

W(n) =.~, I~(n, G) (2.3) 
G 

This new variable G is a graph defined on the lattice. Equation (2.1) with 
(2.3) can be viewed as a partition function of a system that consists of vertex 
variables n and graphs G interacting with each other. A graph consists of 
edges each of which connects two vertices. It imposes a strong restriction 
on the values that the variable n can take because the weight function 
g,'(n, G) will be zero for many "spin configurations." Therefore, we can 
express the weight function l,]:(n, G) as 

I,V(n, G) = V(G) A(n, G) (2.4) 

where the function A(n, G) represents the restriction imposed by G, i.e., it 
takes the value 1 if n is compatible with G and 0 otherwise. 

All functions that have appeared so far also factorize into products 
where each factor is defined on a local unit denoted by u, i.e., 

W(n) = 1-I w(n(u)) (2.5) 
u 

V(G) = 1-[ v(G(u)) 
u 

A(., G) = 1-I A(n(u), a(u)) 
u 

(2.6) 

(2.7) 

A local unit is a bond, i.e., a pair of vertices, in the case of the SW algorithm, 
whereas it is more than two vertices in general. The symbol n(u) is the part 
of n that concerns the unit u. The symbol G(u) has the similar meaning. 
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Equation (2.7) means that the restriction imposed by the graph G is collec- 
tion of local restrictions imposed by its subgraphs G(u). Reexpressing (2.3) 
in the factorized form, we obtain 

w(n(u)) = ~ v(G(u)) zl(n(u), G(u)) (2.8) 
G(u) ~ F(u)  

where F(u) is the set of local graphs for the problem at hand. 
We must assume another property of the restriction imposed by G: 

when we define a one-bit cluster variable a c = 0 or 1 on each cluster in G, 
a way must exist for specifying an arbitrary state compatible with G so that 
the n; depends on i only through the cluster c to which i belongs. Here, a 
cluster is a maximal group of vertices connected by edges to which another 
vertex cannot be added without loss of connectivity. In general, a graph G 
has many clusters. To be more specific, defining Nc(G) as the number of 
clusters in G and X(G) as a set of configurations compatible with G, we 
assume a bijection exists which maps {0, 1} NctO~ onto X(G) in such a way 
that (al ,  0"2 . . . . .  0"No) maps to (nl, n2 . . . . .  nNv) with n; depending only on 0"c 
and iec.  

Thus, our problem is clearly defined. Of course, it is not obvious 
a priori that a given partition function can be expressed in the form 
described here. Most of this paper will be dedicated to the derivation of 
this type of representation for quantum spin systems. In the next sub- 
section, we will discuss how we can construct a proper Markov process 
assuming that we are already given the above representation. 

2.2. Cluster Monte  Carlo Method  

We consider a Markov process (n~'~,G ~'~) (t---1,2,3,...) on the 
extended phase space X x F, ~7~ where X is the configuration space, i.e., 
the set of possible values that n can take, and F is the space of graphs. 
The Markov process is characterized by two transition matrices: the first 
one TL(G' In, G) gives the probability of having a graph G' given a state 
(n, G), and the second one TF(n' In, G) gives the probability of having a 
new set of vertex variables n'. More specifically, TL and TF, called the 
labeling probability and the flipping probability, respectively, are defined by 

TL(G' I n, G) = Pr(G ~'+ 1~ = G, i n~,~ = n, G ~'~ = G) 

Tv(n' [ n, G) = Pr(n ~'+ t) = n, i n,~ = n, G ~'+ i~ = G) 

where Pr(XI Y) is the conditional probability of having an event X given 
an event Y. 
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In ref. 7 a special class of cluster algorithms is discussed in which each 
cluster can be flipped independently as if it were a single noninteracting 
degree of freedom. This type of cluster algorithm is called fi'ee. To obtain 
a free cluster algorithm, tT) we need to choose the flipping probability as 

TF(n' [ n, G)= A(n', G)/N(G) (2.9) 

where N(G) = IZ(G)I = '>Z,., A(n, G). As mentioned in the last subsection, the 
symbol _r(G) stands for a set of configurations defined by 

Z'(G)- {n~Z]A(n,  G)= 1} (2.10) 

Because of the property of A(n, G) discussed in the last section, all 
variables in a cluster are "locked" into a single one-bit degree of freedom 
and N(G) equals 2 Note), where Nc(G ) is the total number of clusters. 

Therefore, the implication of the specific form (2.9) for the flipping 
probability is that we flip each cluster in the given graph G at random with 
probability 1/2 as if each were a single one-bit degree of freedom not inter- 
acting with the others. Although we could choose the flipping probability 
different from (2.9), the choice we made is obviously advantageous in some 
respect. Computational simplicity is such an advantage. In addition, we can 
use improved estimators t 19) for various quantities. 

Given the flipping probability (2.9), we need to choose the labeling 
probability as 

TL(G'In, G)= V(G')/l(n, G')/W(n) (2.11) 

in order that the limiting distribution is the one desired. It is easy to see 
that the two transition probabilities (2.9) and (2.11) have the distribution 
~(n, G) as their stationary distribution. In other words, the distribution 
~(n, G) is an eigenstate with the eigenvalue 1 of both transition matrices, 
i.e., 

I,F'(n', G)= ~ TF(n'IG) [,V(n, G) (2.12) 
n ~ , ~  

Z r (a'ln) (2.13) 
G ~ F  

Here we used the ,fact that Tv(n' ]n, G) and TL(G']n, G) are independent of 
n and G, respectively, and also used the abbreviated notation Tv(nJG) and 
TL(G[n) for the transition probabilities. Therefore, when the ergodicity 
holds for the algorithm, the only possible limiting probability distribution 
is proportional to l,~'(n, G). Indeed, we can prove that the algorithm is 
ergodic in the case of ferromagnetic and XY-like models. In the case of the 
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antiferromagnetic model, although we have not proven ergodicity, we can 
show that if the conventional algorithm is ergodic, the new algorithm is 
also ergodic. This issue is discussed in Section 6. 

We also note that because of (2.3) 

~. g:(n, G) (2.14) 
G E F  

is the distribution that we want to generate. This fact implies that we can 
obtain the distribution W(n) simply by generating a Markov sequence 
described above, picking the vertex-variable part n ~'~ from the state 
(n I'), G I')) and ignoring the graph part G "). 

In an actual Monte Carlo simulation, the labeling process is done 
locally because of the decomposability of V(G)A(n, G), i.e., (2.6) and (2.7). 
Therefore, we can generate a graph G with the probability (2.11 ) simply by 
picking a graph G(u) for each local unit with probability 

PL( G(u) l n(u) ) - v( G(u) ) A(n(u), G(u) )/w(n(u) ) (2.15) 

and then taking the union of these G(u)'s as G. We can easily see that the 
probability (2.15) is properly normalized because of (2.8). 

2.3. The Fortuin-Kasteleyn Representation and the 
Swendsen-Wang Algorithm 

In this subsection, we briefly review the simplest and best-known 
cluster algorithm, the SW algorithm for the Ising model, and its connection 
with the FK representation. This algorithm and connection have already 
been discussedt3); however, we need a more formal discussion to achieve 
our goal of establishing a mathematically rigorous background for general 
cluster algorithms. We also found that Fortuin and Kasteleyn's definitions 
and notation are not completely convenient to describe more general and 
complicated algorithms. Therefore, in this subsection, we will review the 
FK representation and the SW algorithm in a language which we will even- 
tually develo p to accommodate more general ideas as we proceed. 

The Hamiltonian of the Ising model can be written as 

ovg = - J  ~ (2hi-- 1)(2n i -  1) (2.16) 
( i , j )  

where n~ = 0, 1. Correspondingly, the partition function of the Ising model 
is written as 

Z=y. W(n) (2.17) 
n 
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Here n = ( n l ,  n2 ..... nil I) is a set of ILl one-bit variables, where ILl is the 
number of lattice points of the lattice L. The function W(n) is the Boltzmann 
weight, which can be decomposed into a product of local factors defined on 
local units, i.e., bonds in this case, 

W(n) = 1-] w(n(b)) (2.18) 
b 

where n(b) = (n;, nj) is a part of n concerning the two endpoints i and j of 
a bond b. The local Boltzmann factor w(n(b)) is then defined by 

w(n(b)) - exp[K(2n~- 1 ) (2n/ -  1 )] (2.19) 

where K =  flJ. Equation (2.19) can be expressed as a sum of two terms each 
of which corresponds to one of two graphs often called "deleted" and 
"frozen" 

w(n(b)) = ~ v(g)  A(n(b), g) (2.20) 
g = d , f  

where 

v(d) = e - r  and A(n(b), d) = 1 (2.21) 

for a "deleted" bond and 

v(f) = e x -  e - X  and A(n(b), f) = fi(ni, n/) (2.22) 

for a "frozen" bond. Substituting (2.20) into (2.18), we have 

W(n) = I-I ~ v(gb) A(n(b), gb) 
b gb 

The product l ib  A(n(b), gb) implies that a configuration n is allowed 
only if the two variables n+ and nj at the endpoints of any frozen bond are 
equal. Otherwise, this product vanishes and the corresponding term does 
not contribute to the sum. We can visualize this situation by placing edges 
on frozen bonds a~d nothing on deleted bonds. These edges form a graph 
which we denote as G. Obviously, this graph has the same information as 
the set of variables { gb}- Therefore, we will identify these two and simply 
write G = { gb}. A cluster is a maximal set of vertices connected to each 
other by edges. A graph consists of many clusters, in general. It is clear that 
for a given graph G an allowed state is one where all variables n~ in the 
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same cluster in G have the same value 0 or 1. In other words, all variables 
in a cluster are locked into a single degree of freedom represented by ac = 0 
or 1, where c specifies a cluster in G. 

If we adopt the notation used in (2.7), we can write gb = G(b) and then 
rewrite (2.23) as 

W(n) =)-" V(G) A(n, G) (2.24) 
G 

where 

V(G) - [ I  v(G(b)) (2.25) 
b 

A(n, G) = 1-I A(n(b), G(b)) (2.26) 
b 

(2.27) 

Substituting (2.24) into (2.17), we have 

Z = ~  ~ V(G)zl(n, G) (2.28) 
n G 

This equation is the Fortuin-Kasteleyn representation for the Ising model. 
Although it is not explicitly indicated, Z and V(G) depend on the model 
and the coupling constant K. On the other hand, zJ(n, G) will be used for 
other models by generalizing its definition. In what follows, we will see 
exactly the same form as (2.28) with different Z and V(G) for other models. 

Because we have rewritten the partition function in the form discussed 
in Section 2.1, we can construct the Markov process following the general 
prescription given in Section 2.2. The resulting algorithm is the SW algo- 
rithm. To be specific, given a configuration n, we first choose a graph G 
with the weight V(G)/f(n, G) and then pick a new configuration n' with the 
weight ,4(n', G). The first step is equivalent to choosing a local graph G(b) 
with the weight v(G(b)) A(n(b), G(b)). Because of (2.20), the probability of 
assigning G(b) to a given bond in state n(b) is 

PL(G(b)]n(b)) - v(G(b)) ,4(n(b), G(b))/w(n(b)) (2.29) 

This result agrees with the ordinary SW labeling probability 

P].("deleted" ] (0, 0)) = Pt("deleted" [ ( I, 1 )) = e -2K (2.30) 

PL("deleted" I (0, 1 )) = PL("deleted" I( 1, 0)) = 1 (2.31) 

PL("ffozen" [ n(b)) = 1 - PL("deleted" ] n(b)) (2.32) 
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On the other hand, the second step is, as discussed in the last subsec- 
tion, equivalent to setting each cluster variable ac to 0 or 1 with equal 
probability. 

2.4. Generalization to Quantum Spin Systems 

In this subsection, we will give an example of the generalization of the 
FK representation to quantum spin systems. We will discuss the S = 1 
antiferromagnetic Heisenberg model in one dimension. The Hamiltonian is 
written as 

where S 2 = 2 and 

0~ - -  )' Es,, s f l  = 

N 

~ / : ~ : J  E s i ' s i +  I (2.33) 
i = 1  

(=, fl, y) = (x, y, z), (y, z, x), or (z, x, y) (2.34) 

The periodic boundary condition, i.e., S N + I = S I ,  is assumed. We also 
assume that N is even. Then, by applying the unitary transformation 

S;Y~ - S ~  and S~Y--.., -S] '  (2.35) 

to all sites with even i, we have 

N 

.ge'= - J  y '  ~,.,+, (2.36) 
i = 1  

where 

A, , j  - s Ts; + s 'sy - s s; (2.37) 

We remark that these assumptions are not essential to the general algo- 
rithm described in the following sections. 

Usually, we take the basis in which S, is diagonalized for Monte Carlo 
simulations. Then, a basis vector is specified by a set of N classical 
variables, each of which takes a value - 1 ,  0, or 1. The Hilbert space is, of 
course, 3 N dimensional. However, this basis is inconvenient for our purpose 
of mapping the problem into a one-bit problem of the form discussed in 
Section 2.1. Therefore, we will first map the original quantum problem into 
another quantum problem with one-bit degrees of freedom. To do this, we 
first decompose each spin operator into a sum of two Pauli operators: 

Si =g(a(i.tl+tr(c20, o:=x, y, o r z  (2.38) 

822/80/1-2-12 
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where 

[a~,u ), a~j,v~] = 2 ~ ~,,j6u, va~;,~,) (2.39) 

Then, we take a basis in which the z-components of the Pauli operators are 
diagonal. Therefore, a basis vector can be expressed as In), where n is a set 
of 2N one-bit variables 

n=(n~l,l),n~l,2),n~2,1),nt2,2),n~3,1),n~3,2),...,n~N,l),nov,2)) (2.40) 

and has the property 

a~i,u ) In) = (2n. ,u)-  1) In), n(i,u) = 0 o r  1 (2.41) 

Clearly, the Hilbert space is 22u dimensional and larger than the original 
Hilbert space. The new Hilbert space is larger because it includes some 
singlet states which are unphysical. Since we should not count such states 
in the partition function, the partition function in this new basis becomes 

Z =  Z (n] Pe-P~P In) (2.42) 
n 

The projection operator P is the product of local projection operators P; 
which projects out states with S/2 = 0, 

P = 17I P; (2.43) 
i 

It is easy to see that P; is the syrnmetrization operator 

P, = �89 )~'~) (2.44) 

where I is the identity operator and A>~ is the operator that exchanges no.~ ) 
and n,,2). 

Thus, the original problem is mapped to a problem with one-bit 
degrees of freedom (2.42). This problem still is a quantum problem which 
needs the evaluation of matrix elements of the Boltzmann density operator. 
Therefore, the next thing we must do is to map this problem to a classical 
one-bit problem by the ST decomposition. We can write Pe-P"VP in (2.42) 
as 

Pe-PaeP=(Pe-a~"*'P)M'r,,~[(Pe-a'~'~P)(Pe-a~"V~ ~T (2.45) 

where MT Ar -- fl and 

9~E-- - J  ~ Ai,,+t, go ~ --J E /~i.i+l (2.46) 
i:  e v e n  i:  odd 
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The integer MT is called the Trotter number. By inserting the identity 
operator 

I =  z In'> <n'l (2.47) 
I1' 

between the factors in (2.45), we can reexpress the partition function (2.42) 
a s  

Z = Z  Z " " Z  (n]l  Pe-'J~ae~P InM>(nMI P e - Z ~ ~  InM_l> 
tim n M -  I n l  

x ... (n2l P e - ' J ' ~ ~  in,> (2.48) 

where M = 2MT. 
Because of the form of (2.48), it is natural to introduce a hyperlattice 

which consists of M lattices, each of which is equivalent to the original 
lattice. Because the original lattice is a ring in the present case and we are 
automatically imposing the periodic boundary condition in the new direc- 
tion, the hyperlattice is a toms. We will refer to this hyperlattice by a 
symbol E and each ring in this hyperlattice by a symbol E k (k = 1, 2 ..... M). 
We call M N  lattice points in the hyperlattice sites. As we have seen, two 
one-bit variables are defined on each site. They can be viewed as variables 
defined on two vertices inside the site. Thus, the hyperlattice is a set of 
2 M N  vertices. In what follows, we refer to the set of vectors { n], n2 ..... nM} 
simply as n. We also refer to the variable n,,~,) on •k as n(,,;.~,). 
Accordingly, the vertex on which n(k,i,u ~ is defined will be referred to as 
(k, i ,p).  The site that contains the vertices (k, i, 1) and (k,i, 2) will be 
referred to as (k, i). In Fig. 1, the hyperlattice is shown for the case of N =  6 
and Ma- = 2. Next, we introduce the symbol n(V), which stands for the part 
of n concerning a set II, where V is any set of vertices. For example, 
n((k, i ,p))  is simply n(k.i,~,), n((k, i)) stands for (n(k,i,,), nCk.i,2)), n(L,k) is nk, 
and . (E)  is n itself. Actually, a special case of this notation has already 
been used in (2.7). 

Having defined this notation, we note that the state In(Lk)) can be 
expressed by a direct product of local wave functions as 

In(•k)) = (~) In(Irk, i)))2 (2.49) 
i: e v e n  

where ltk.i ~ is a pair of sites { (k, i), (k, i + 1 )}, or equivalently a set of four 
vertices {(k, i, 1), (k, i, 2), (k, i +  1, 1), (k, i +  1, 2)}. To be more specific, 
In(l(,.,.))) 2 is an eigenvector of four Pauli operators a~;.u)and a~;+l,u ) 
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Fig. I. The "checkerboard" hyperlattice for the S = 1 X Y  model on a chain of the length 6 
with Trotter number  2. Only shaded plaquettes are called "plaquettes" here. On each 
plaquette a four-body Boltzmann factor is defined. 

(/~= 1, 2) in a 24-dimensional local Hilbert space. Therefore, because 
[3~.;+ i, Aj.j+ l] = 0 if l i - j l  >/2, we obtain 

(n(Lk+l) l  ee-'~"eEe In(Lk)) = I-I w(n(p(k.i))) (2.50) 
i: even 

where P(k.i) is a plaquette defined by P(k,i) = l(k.i) L3 l(k + ~.i) and 

w(n(p(k.i)))--(n(ltk+l,i))] PiPi+][exp(K.4i.i+l)] PiPi+l In(ltk.i)))2 (2.51) 

with K - z l z  J. An expression similar to (2.50) is available for Yg'o. There- 
fore, the partition function (2.48) can be rewritten as 

Z = ~ W(n) (2.52) 
n 

where 

W(n) = I-[ w(n(p)) (2.53) 
p 

The product in (2.53) is taken over P(k,i) with even k +  i. 
Here we note that w(n(p)) depends on n(p) only through m(k,/) = 

Zp n(k.i,~,), where (k, i) is one of four sites in the plaquette p. Therefore, we 
can reexpress w(n(p)) in the form 

w(n(p)) = �9 (m~k+ 1,i~ m,k+ l.i+,,~ (2.54) 
\ m(k ,  il m ( k , i + l )  / 
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We further note that this # has several symmetry properties: 

ffl( mtl rntr~=k( mb, mbr~:~(mtr mt'~ 
\ m b l  mbr/ \ m t l  mtr /  \ m b r  mbl/  

(2S--mb, 2S--mbr~ 
=W\2s- -mt l  2S -- m,r J (2.55) 

where S = 1 in the present case and the suffix "tl" means top-left corner of 
the plaquette, "tr" means top-right, etc. These symmetry properties define 
classes of states which correspond to the same local weight #. In what 
follows, we will specify one of these classes by a symbol 5a(p). The "particle 
number conservation" imposes a restriction on ~, i.e., # is nonzero only if 

mbl --{-- mbr  = mtl  --}- mtr (2.56) 

We can eliminate from consideration all classes that violate this condition. 
As a result, only seven distinct values among 2s= 256 values of w(n(p)) 
exist, i.e., there are seven relevant classes of states, 

k(1) = k  (~ ~) = 12r 

�9 (2) = ~  (~ ~)=2r+6r-]+4r  -z 

~(2 ~)=2r_6r_ i+4r_  2 ~(3) =w 0 

(1 ~) = _4r +4r_ 2 �9 ( 4 ) = ~  0 

_(1 ~ ) =  _ 6 r + 6 r _  1 �9 (5)=w 0 

. ( 0  ])  = 6 r + 6 r _  1 �9 (6)=w 0 

~(7) = ~ ( I  I ) =  8r+4r  -2 

(2.57) 

where r -  exp(-K). 
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Equations (2.52) and (2.53) have the same form as (2.1) and (2.5). 
Therefore, the next thing we have to find is a set of local graphs F(p) and 
coefficients v(G(p)) that satisfy (2.8) with u replaced by p, 

w(n(p)) = ~ v(G(p))/l(n(p), G(p)) 
G(p) ~ F(p) 

(2.58) 

To this end, we consider the graphs which correspond to pairing of the 
eight vertices in p, i.e., graphs which consist of four edges sharing no 
vertices. From the 105 such graphs, we take only those graphs that consist 
of vertical or horizontal edges. Here, a vertical edge connects two vertices 
whose spatial indices are the same and the temporal indices are different, 
whereas a horizontal edge connects two vertices whose spatial indices are 
different and temporal indices are the same. There are 24 such graphs. When 
we neglect distinctions between vertices in the same site, these 24 graphs are 
classified into three classes which are represented by the diagrams in the 
leftmost column in Fig. 2. We use a symbol fg(p) to specify a class of graphs. 

We next define A(n(p), G(p)) in (2.58) as the function that for any 
edge connecting two vertices v and v' takes the value of 1 if n(v)=n(v ' )  
and the edge is vertical and if n(v)= 1 - n ( v ' )  and the edge is horizontal. 

1 II II 

2 [iiiiiiiiii 
. . . . w . . . . . ,  

3 
. . a u N m . m  

1 2 3 4 5 6 7 

(~ :)(: :)(: :)('o :)(: :)(~ :)(: :) 

4 4 0 0 0 2 1 

0 16 0 4 4 4 2 

0 4 4 2 0 0 1 

Fig. 2. The coefficient N(5"(p), ~(p)) for the S =  1 antiferromagnetic Heisenberg model. 
5P(p) specifies a class of states and (~(p) specifies a class of graphs. In the diagrams of the 
leftmost column, a solid line stands for a green edge and a dashed line a red edge. 
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Otherwise, this function takes the value of zero. For later convenience, we 
call edges for which two vertex variables have the same value green and all 
other edges red. In the present case, all vertical edges are green, whereas all 
horizontal edges are red. All edges in what follows have this additional 
attribute, i.e., color. With this definition, we can formally specify the set of 
graphs F(p) in (2.58) as 

F(p) = { G(p) I"Every vertex is an endpoint of one and only one edge" and 

"An edge is either green vertical or red horizontal"} (2.59) 

Given (2.57) and (2.59), we next find a solution v(G(p)) of (2.58). It 
is natural to seek a symmetric solution in which v(G(p)) depends on G(p) 
only through the class to which G(p) belongs, i.e., v(G(p)) = fi(f#(p)) where 
G(p) ~ ~9(p). Taking this into account, we can rewrite (2.58) as 

�9 (S*(p)) = ~ N(&a(p), fs ~(:-s (2.60) 
~(p) 

Here, the function N is defined by 

N(Se(p), ~(p)) - ~ A(n(p), G(p)) (2.61) 
G(p)  ~ ~(p) 

where n(p) ~ 5a(p). The function N is shown in Fig. 2. We can easily see 
that the solution 

15(1) ----- �88 

~(2) =- �88 (2.62) 

~(3) = �88 

satisfies (2.60). 
Now, since we obtained the representation in the form discussed in 

Section 2.1, the Monte Carlo method in Section 2.2 applies. The resulting 
algorithm is the loop algorithm used in ref. 17. 

In this subsection, we found the solution v(G(p)) given a set of graphs 
F(p), but did not show how we choose F(p) or how we obtain the solution 
v(G(p)) in general. These questions will be answered in the following 
sections. 

3. CLUSTER REPRESENTATION OF GENERAL X X Z  MODEL 

In Section 2.4 we saw how the S =  1 antiferromagnetic Heisenberg 
chain is mapped to a one-bit classical problem. In this section, we will see 
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how the mapping is done in the case of general X X Z  spin systems. Our 
task can be divided into two parts. In Section 3.1 we formulate the problem 
as a one-bit classical problem with a weight function that factorizes into a 
product of local factors. Each one of the local factors is defined on a local 
unit called a plaquette, as we saw already. At this stage, graphs are not yet 
introduced. In short, in Section 3.1 we will formulate the problem in the 
form of (2.1) with (2.5). Then, in Section 3.3 we show without derivation 
how w(n(u)) can be expressed as a sum of terms each of which corresponds 
to a local graph G(u); that is, we will present an explicit form of (2.8) for 
the X X Y  model. This expression leads to (2.3). The derivation will be 
presented in Section 4. To make the discussions clearer, in Section 3.2 we 
summarize and generalize the notations and definitions introduced in 
Section 2.4 concerning graphs. 

3.1. M a p p i n g  to a Classical Problem 

Our Hamiltonian is 

J e  = - Z ( s : . j s ; ' s ;  + + J b s , s ; )  
(~,j) 

= - ~.  J , , j (S ; :S j  ~. + S~ 'S} '+  2 , j S f S ; )  (3.1) 
( i , j )  

.x- _ _  ) .  _ _  ot with J , . j - J ~ . j - J ; . j  and J~.j = J;.j2~,j. The operator S~ is the spin operator 
which satisfies 

S~ = (S~. ) 2 + (ST) z + (S~) 2 = S(S  + I) (3.2) 

and 

o t  __  __  ) ,  E s , ,  - a,. s , (3.3) 

for (~, fl, 7) = (x, y, z), (y, z, x), or (z, x, y). The symbol (i, j)  in (3.1) is an 
arbitrary undirected pair of elements of the set of lattice points L. The 
constants Jcj and 2;,j can be any real numbers. We are not assuming any 
particular geometric feature of the lattice. It can have any dimension and 
does not even have to be translationally symmetric. 

The first important step is to express a spin operator in terms of sum 
of 2S Pauli operators as we did in Section 2.4, 

2 S  
c t  ~t S ~ -  �89 Z a;a, (3.4) 

, u = l  
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To each Pauli matrix, we will assign a vertex. Therefore, it is convenient to 
define E as a set of vertices defined on the lattice L. We work with a com- 
plete set of states that are simultaneous eigenfunctions of the operators a-'. t, l t  

( i=  1, 2 ..... ILl; P = 1, 2,..., 2S). Here, ILl is the number of the lattice points 
in the lattice L. To be more specific, 

a~.,, In(L)) - ( 2 n , . ~ -  1)In(L))  (3.5) 

where n(E) represents 2S ILl one-bit variables, 

n(L) = (n(].]), n(],2) ..... ntlLI,2S )) (3.6) 

The partition function in this basis becomes 

Z =  ~. (n(E)l  Pe-P~ In(L)> (3.7) 
n(L) 

where P is the projection operator defined by 

P =  l--[ P~ (3.8) 
i ~ L  

and P~ is the projection operator to the space in which S] takes the value 
S(S+ 1). Since this representation with Pauli matrices provides a single 
representation for which S~ = S(S + 1 ), (3.7) is the correct representation of 
the original model. 

As we saw in Section 2.4, using the ST approximation I ~2) and (3.4), we 
can map the original quantum problem into a problem with classical one- 
bit degrees of freedom. However, since there are so many variants of the ST 
approximation, it is impractical to describe all of them. Therefore, in what 
follows, we will only describe properties which are shared by all known 
variants. 

Once mapped, the problem has 2SM ILl one-bit variables, where M is 
some integer proportional to the Trotter number MT. The proportionality 
constant depends on the variant of the ST approximation. The 2SM ILl 
variables naturally fit into a (d + 1 )-dimensional hyperlattice, where d is the 
dimension of the original lattice L. We call the first dimension temporal or 
vertical and the other d dimensions, which correspond to the dimensions of 
the original lattico, spatial or horizontal. This lattice consists of M layers of 
d-dimensional lattices each of which is equivalent to the original lattice L. 
We number these layers with an index k = 1, 2 ..... M and use Lk to denote 
the kth layer. We call a lattice point in this hyperlattice a site. A total of 
2S vertices are associated with each site, and a one-bit variable is defined 
on each vertex. We label a site with two indices (k, i), with the first index 
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specifying the temporal location of the site and the second index specifying 
the spatial location. As for vertices, we use symbols (k, i, p) by adding an 
additional index/z = 1, 2 ..... 2S specifying the /z th  vertex in the site (k, i). 
The boundary condition in the temporal direction is periodic, i.e., 
k = M + 1 is identified with k = 1. On the other hand, we are not assuming 
any particular spatial geometry; therefore, the present scheme can be 
applied to models in any dimension, with any boundary condition, and 
with any range of the interactions. 

A horizontal link is a pair of sites whose temporal indices are the same. 
A vertical link is a pair of sites whose spatial indices are the same and 
temporal indices differ by one. Some of the squares which consist of two 
vertical links and two horizontal links play a special role, because a local 
weight function is defined on them. We call such a square a plaquette and 
often use a symbol p for it. The set of 8S vertices associated with four 
comers (sites) of a plaquette will also be referred to as a plaquette and 
represented by the same symbol. Which square among all possible squares 
is to be a plaquette depends on the variant of the ST approximation. In 
any variant of the ST approximation, no vertical link is shared by more 
than one plaquette. The symbol q/p denotes the set of plaquettes, whereas 
the symbol q//denotes the set of vertical links which do not belong to any 
plaquette. In the example presented in Section 2.4, q/t is an empty set. In 
other cases, such as the systems defined on a triangular lattice, q/~ is non- 
empty. We also define q/=-- agp w q/t. This is the set of local units that we will 
consider in what follows and the products in (2.5)-(2.7) should be taken 
over this set in the present case. 

It is convenient to have a notation by which we can refer to a specific 
site or a link in a given plaquette p. To this end, we consider a plaquette 
p consisting of four sites (k, i), (k, j), (k + 1, i), and (k + 1, j). We first take 
either one of spatial indices i and j and call it "left" and the other "right." 
We use the symbols ij(p) for "left" index and it(p) for the other. (Which 
one we call "left" does not matter in what follows.) We also define symbols 
It(p) and lb(p) as the top and bot tom horizontal links of p, respectively. 
The symbol sa(p) stands for a top-left site. Other symbols str(p), Sbl(P), 
and Sbr(P ) are defined in a similar fashion. The relative locations of these 
symbols are illustrated in Fig. 3. 

With these definitions and the ST approximation, we can rewrite the 
partition'function (3.7) as 

Z =  ~ sgn(n) W(n) (3.9) 

with the sign factor sgn(n) and the Boltzmann weight W(n) defined below. 
The sign factor is defined so that W(n) is always nonnegative. The 
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/ S.lp), 
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/ i ,ip, ilp) 

O O 

l t /#  

S p) 

LMT 

Fig. 3. The hyperlattice on which the transformed problem is defined and a plaquette on 
which a four-body Boltzmann factor is defined. The upper link of the plaquette p belongs to 
the layer L k +  t and its lower link belongs to the layer L k .  The open ovals represent sites. 

configurations with negative sign appear only for a frustrated system such 
as the antiferromagnetic Heisenberg model on a triangular lattice. Although 
the sign factor is physically important, from a computational point of view, 
it is needed only when adding up measured values at each Monte Carlo 
step and does not affect the Markov process. In other words, we usually 
neglect the sign factor in defining the Markov process and the limiting 
distribution of the resulting process is W(n). Since the goal of the present 
paper is to accelerate the Markov process, we neglect the sign factor in 
(3.9). The weight function W(n) in (3.9) is defined by 

W(n)- 11 w(n(p)) 11 J1(n(1)) (3.10) 
p ~ allp I ~ '~l t 

Since there is no interaction which corresponds to a vertical link in q/t, 
Jl(n(/)) should be .a function which takes the nonzero value 1 if and only 
i fn(k. i . ,~=nik+l. i .~,  ) for all/~, where l =  {(k, i), ( k +  1, i)}. 

The function w(n(p)) in (3.10) is the absolute value of matrix element 
of the local Boltzmann operator, that is, 

w(n(p)) -l(n(It(p))[ ~8(p) ln(/b(P)))2l (3.11) 
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Here, 
which the operators ai~. and a)~.. operate, where 
~ = x ,  y, -. The operator/~(p) in (3.11) is defined by 

~(p) -- pi t tp)pidp)p(p)  Pi, tp)Pide) 

with 
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( ' ' " ) 2  is the matrix element in 24S-dimensional Hilbert space on 
/ z = l , 2  ..... 2S and 

(3.12) 

. ,  1 ,313, 
it, v 

Here A(p, v) is defined by 

A(]2, ) = a/lip)./, ~Tidp).v ~- ail{p).p~Tirlp).v -~- 2pa;l (p) , l ,~T;(pi .v  (3.14) 

The constant Kp in (3.13) depends on the variant of the ST decomposition. 
However, in any variant of the ST decomposition, the following equation 
holds: 

Kp=flJi, j/4 for all (i,j) (3.15) 
P 

il(p) = i 
ir( p )= j 

where the summation is over the plaquettes whose spatial location is 
specified by two spatial indices i and j. 

As a function of Kp and 2 r, the local weight function w(n(p)) has the 
following property: 

[ w(n(p))] Kr,# = [ w(n(p))] -K: . - : .  (3.16) 

Because of this identity, we can assume positive Kp without loss of 
generality. With this assumption, we can rewrite (3.11) simply as 

w(n(p)) = (n(/t(p))[/~(p) [n(/b(p)))2 >/0 (3.17) 

In order to prove the identity (3.16), we notice that 

(n(lt(p))[ P(p) In(lb(p)))2 

= ( (mtl ' mtr[ p(p)[mbl, mbr) ) / [  (2S '~(  2S")( 2S "~( 2S ')] I/2 (3.18) 
/ I  \ m t l J \ m t r f \ m b l / \ m b r f  J 

where 

rex-  ~'. n,., X=t l ,  tr, bl, or br (3.19) 
v~sx fp)  
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and Im,, m 2 ) )  is the eigenstate of S~, S~, S~, and S~ which satisfies 

S~ I m l , m 2 ) )  =S~ [ m l , m 2 ) )  = S ( S +  1) [ml ,m~)  ) (3.20) 

S, Iml, m 2 ) )  = ( - S + m l )  Imp, m2) ) (3.21) 

S} Iml, m 2 ) )  - - ( - S + m 2 )  Iml,/972)) (3.22) 

and mi= 0, 1 ..... 2S. Since the term 

S" . q x  ,, ,, i~p~- i,~p~ + S ;',lp~ S ~,~p~ (3.23) 

in (3.13) corresponds to transferring a "particle" (i.e., a vertex with a value 
of 1) from one side (left or right) to the opposite, a matrix element 

< (mtl, mtr I p(p) Imu, mbr> ) (3.24) 

with an odd value of mtt--mbl= --mtr+mb~ must be an odd function of 
J,. = Jy = J. For the same reason, if mtl--mbl is even, the matrix element 
must be an even function of J. Therefore, changing the sign of K and 2 at 
the same time, which is equivalent to changing the sign of J.,. = J,, with J .  
fixed, may change the sign of some of matrix elements, not the absolute 
values. Therefore, because of (3.11) and (3.18), (3.16) follows. 

In (3.10), we employed a method of decomposition in which the two- 
body interaction in the original Hamiltonian corresponds to a four-body 
interaction on the plaquettes. It is possible to decompose the partition 
function in such a way that the local units are cubes, for example, instead 
of plaquettes. This possibility will be briefly discussed in Section 6. 

3.2. Notat ion and Definit ions 

In Section 2 we introduced notation and definitions to present two 
pedagogical examples. Although most essential concepts have been presented 
there already, we need to extend them to describe the algorithm for 
more general cases in an unambiguous fashion. In this subsection, we will 
summarize and generalize those notations and definitions. 

A graph G=(VG,  EG) is defined by two sets V c and EG. We call 
elements of V c vertices and elements of E c edges. In what follows, two 
symbols v and e, often with subscripts and superscripts, denote a vertex 
and an edge. Every edge has two attributes: endpoints (two vertices that the 
edge connects) and color (green or red). 

A graph G ' = ( V c , , E c , )  is called subgraph of G = ( V c ,  E~) if 
V c, c Vc, Ec, c Ec. A path P is a special graph whose vertices and edges 
can be numbered in such a way that the ith edge's endpoints are the ith 
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and the ( i+  1)th vertices. Two vertices v and v' are called connected in G 
when a path in G exists whose first and last vertices are v and v'. A path 
is called green when it contains an even number of red edges. Otherwise, 
it is called red. If the first and the last vertices of a path are the same, i.e., 
if the path is closed, it is called a loop. A subgraph C of G is called a chlster 
if any two vertices in C are connected in G, any edge in G connecting two 
vertices in C belongs to C, and no vertices or edges can be added to C 
without violating the two previous conditions. A union of two graphs G 
and G' is defined by 

GuG'  = ( V a u  Vc , ,E6u  Ea,) (3.25) 

In Section 2.4 we saw that a special type of edge, namely, green vertical or 
red horizontal, played a particularly important role in representing the 
local weight w(n(p)) in the form (2.58). We will see in the next subsection 
that different types of edges are important for different types of anisotropy 
of the models. Therefore, it is useful to classify open paths and edges into 
several categories. They are classified according to the relative locations of 
their endpoints. A vertical path connects vertices whose spatial indices are 
the same but have different temporal indices, a diagonal path connects 
vertices whose spatial and temporal indices are different, a horizontal 
path connects vertices whose spatial indices are different but have the same 
temporal indices, and a recurrent path connects vertices whose spatial and 
temporal indices are the same. The vertical paths and the diagonal paths 
are both called temporal, whereas the horizontal paths and the recurrent 
paths are called spatial. Some of these paths are special for ferromagnetic 
models and some others for antiferromagnetic ones. We will call a green 
vertical or a green diagonal path ferromagnetic, and a green vertical or red 
horizontal path antiferromagnetic. A green vertical path is both ferro- 
magnetic and antiferromagnetic, while a recurrent path is neither. Since a 
graph with only one edge and two vertices that the edge connects can be 
viewed as a special open path, we can apply the above classification to 
edges as well. These definitions are summarized in Fig. 4. 

As we saw in the last section, we define not only graphs, but also a set 
of vertex variables n on the same vertex set as graphs. With these one-bit 
variables n and graphs G, we can express the partition function in the 
form of (2.1) with (2.3). These equations can be viewed as representing a 
system that consists of vertex variables and graphs interacting with each 
other. From (2.4), it is clear that the function A(n, G) is the "interaction" 
between vertex variables and graphs. In the two examples presented in the 
last section, we saw two of its special forms. Here, we restate its definition 
given in Section 2.4 for the S = 1 Heisenberg model in a clearer fashion and 
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Fig. 4. The types of edges. Red edges are represented by dashed curves and green edges are 
represented by solid curves. 

show a few of its important properties. The function A(n(V~), G) is defined 
by 

A(n(Vc), G) =- I-I ee(n(e)) (3.26) 
eeEG 

with a one-bit function te(n(e)) which takes value 1 if e is green and the 
vertex variables take the same value at the two endpoints,  or if e is red and 
the variables take different values. Otherwise, the function takes the value O. 

(a) compatible (b) incompatible 

�9 ... n(v) = 1 

0 ... n(v)  = 0 

Fig. 5. Two local configurations (a) compatible and (b) incompatible with a given graph. 
The vertices for which the vertex variables are 1 are represented by solid circles, the other by 
open circles. 
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If A(n(Vc) , G) = 1, the graph G and the state n(Vc) are called compatible 
with each other. Examples for compatible and incompatible cases are 
shown in Fig. 5. It is obvious from the definition that A(n(VG), G) is non- 
zero if n,. = n,,, for any pair of vertices v and v' connected by a green path 
and if n,. = ri,,, = 1 -n, , ,  for any pair of vertices connected by a red path. For 
two graphs G and G', the foUowing identities hold: 

A(n(VG), G) A(n(Vc,), G') 

= 1-I e,(n(e)) ]-I e,(n(e)) 
e E E G  e e E a ,  

= II ee(n(e)) I-I e~(n(e)) ]-I [ee(n(e))] 2 
e ~. EG\EG'  e E EG' \EG e E EG ~ EG' 

= I-I ee(n(e))=A(n(Vc,-,~'), GwG')  (3.27) 
e~EGuG' 

In deriving this identity, we have used the fact that •2= E. This identity is 
useful and will be used in what follows. As a corollary, we obtain 

A(n(Vc), G)= I-[ A(n(Vc), C) (3.28) 
C~(G) 

where C~(G) is the set of clusters in G and V c is the vertex set of a graph 
C. The proof is straightforward using (3.27) if we note that 

U c =  G (3.29) 
Cer6(G) 

3.3. Local Weight Equation 

Given the A functions defined in the last subsection, our task is to find 
a set of graphs F(p) and the weight v(G(p)) of graphs that satisfy the local 
weight equation 

w(n(p)) = ~ v(G(p)) A(n(p), G(p)) 
G ( p )  �9 l " (p)  

(3.30) 

for various given weights w(n(p)). Once we obtain the form (3.30), by sub- 
stituting it into (3.10), we can express the Boltzmann weight as 

W(n) = I-[ ~ v(G(u)) A(n(u), G(u)) (3.31) 
u e q z  G ( u ) ~ l ' l u )  
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where v(G(I)) for l e  a//i is 1 and A(n(l), G(I)) is 6t(n(1)), i.e., 1-'(1) contains 
only one graph G(I) that consists of 2S green vertical edges each of which 
connects two vertices with the same spatial indices i and vertex indices #. 
With the use of (3.27), the above equation can be written as 

E H v o,u,,ll H o u), l 
G E F  u ~ ' ~  u ~  

= ~ V(G) A(n, G) (3.32) 
G ~ F  

where V(G)=I-I,,v(G(u)) and G =  13,, G(u). Since this representation has 
the form discussed in Section 2.1, we can construct a cluster algorithm 
following the prescription given in Section 2.2. 

In Section 2.4 we defined graphs G(p) whose vertex set is a plaquette 
with eight vertices. We also defined a special set of graphs in (2.59) over 
which the summation in (3.30) should be taken. Obviously, for the general 
XXZ models, we have to define G(p) on a plaquette of 8S vertices, not on 
one of only eight vertices. Furthermore, as we will see in the next section, 
we have to take different types of sets as F(p) in (3.30). In this subsection, 
we present the essential result of the next section, i.e., we present explicitly 
the set of graphs 1-'(p) with which the local weight equation (3.30) can have 
meaningful solution v(G(p)). 

In the next section, we will find that the proper set of graphs F(p) 
depends on the anisotropy of the problem. Therefore, we will separately 
treat five distinct cases: (1)XY-like (12,.,j[ < 1), (2)isotropic ferromagnetic 
(2;,y=l),  (3) isotropic antiferromagnetic (2 ; . : .= -1) ,  (4) ferromagnetic 
Ising-like (2;.j> 1), and (5)antiferromagnetic Ising-like ( 2 i j < - 1 )  aniso- 
tropies. Corresponding to these five cases, we will define five sets of graphs. 
All graphs belonging to any one of these five sets share a property in 
common. To be more specific, all five sets are included in a larger set of 
graphs 

FXXZ(p) -- {G[ V o =p, 

"Any cluster in G has an even number of vertices" and 

"Any edge is green temporal or red spatial"} (3.33) 

The first condition reflects the rule that only local configurations n(p) for 
which Y ~ p  no is even have a nonzero weight w(n(p)). The second restric- 
tion imposed upon the edges for the XXZ model reflects the fact that z 
component of total magnetization commutes with the Hamiltonian and is 

822/80/I-2-13 
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conserved. Flipping those edges, green temporal or red horizontal, auto- 
matically results in a state for which this conservation law holds. As we will 
see in the Appendix, we do not have this restriction for the X Y Z  model, in 
which z component is not conserved while the first condition is still valid. 

The five subsets are defined as 

FXr (p )  - { G e F X X Z ( p ) l " N o  two edges in G share a vertex"} (3.34) 

FVU(p) ---- { G ~ FXr (p )  ["Every edge in G is ferromagnetic"} (3.35) 

FAVn(p)  -- { G e FXr (p )  ["Every edge in G is antiferromagnetic"} (3.36) 

FV(p)  - { G ~ FXXZ(p) l "Every  edge in G is ferromagnetic"} (3.37) 

FAF(p)  ---- { G E FXXZ(p) ]"Every edge in G is antiferromagnetic" } (3.38) 

We note that 

F T M  = F x r n  F v (3.39) 

FAIrH = F X r t ~  F AF (3.40) 

A typical graph for each case is illustrated for the S = 3/2 case in Fig. 6. 

Fig. 6. 

(a) XY 

Typical examples for the 

(b) FH (d) F 

(c) AFH (e) AF 

five classes of graphs for (a)XY-like, (b)isotropic 
ferromagnetic, (c)isotropic antiferromagnetic, (d) ferromagnetic Ising-like, and (e)antiferro- 
magnetic Ising-like anisotropies. 
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In the next section, we will show that with these sets of graphs, at least 
one nonnegative set of coefficients v(G(p)) exists that satisfies (3.30) for 
each type of anisotropy. In this paper, we do not give the .explicit form of 
those solutions ~except for the special case of Heisenberg models. Instead, 
we will present the method to compute the coefficients. 

It is interesting to consider what kind of clusters will be formed when 
we take the union of local graphs, assuming that all plaquettes in the 
system have the same type of anisotropy. One striking difference is seen 
between the XY-like and the Ising-like anisotropic cases. For  XY-like 
anisotropy, in a local graph G(p), a vertex is an endpoint of one and only 
one edge. This means that every vertex in G is shared by two and only two 
edges, when we take into account the fact that every site is shared by two 
local units, i.e., plaquettes or vertical links. Therefore, when we take the 
union graph G - U,  G(u), it consists of a number of loops without branching. 
Therefore, the present scheme naturally leads to a loop algorithm in the case 
of XY-like anisotropy. On the other hand, we generally have branching in 
the case of Ising-like anisotropy, because a vertex can be shared by any 
number of edges. Another important difference is that, in the case of XY-like 
and ferromagnetic Ising-like anisotropies, for any worldline in the current 
configuration, a loop can form that coincides with the worldline because 
the graphs include both vertical and diagonal edges and a worldline also 
consists of vertical and diagonal segments. Here a worldline is a line con- 
necting vertices with vertex variable 1. This means that, in those cases, any 
worldline can vanish in a Monte Carlo step. On the other hand, in the case 
of antiferromagnetic Ising-like anisotropy, a worldline with diagonal 
segments cannot vanish because a loop which overlaps with this worldline 
cannot form. This may cause a problem concerning ergodicity, as we will 
discuss in Section 6. 

4. CLUSTER REPRESENTATION OF THE 
LOCAL B O L T Z M A N N  FACTOR 

In this section, we show that the local Boltzmann factor w(n(p)), 
defined on a plaquette p, can be expressed by a sum of terms, each of 
which corresponds to a graph. In other words, the goal of this section is 
to prove the weight equation (3.30) has at least one meaningful solution 
with a set of graphs (3.34), (3.35), (3.36), (3.37), or (3.38), depending on 
the anisotropy of the problem. We also propose a method to compute the 
coefficients v(G(p)). For the general case, we will show how to compute 
them numerically, and for the Heisenberg models, we will provide compact 
formulas. 
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Because we will focus on only one pair of interacting points in the 
original lattice L, which we refer to as a and b, the corresponding lattice 
we consider in this section has just two lattice points when projected onto 
a horizontal plane. What we will discuss is the multiplication of two 
operators defined in the local Hilbert space on these two lattice points (in 
the original lattice). Because an operator in this space can be represented 
by a plaquette, it is sufficient to take two plaquettes, one stacked on the 
other, in order to discuss the multiplication. Therefore, the size of "hyper- 
lattice" we consider here in the temporal dimension is three. 

To avoid confusion, we emphasize that this hyperlattice, whose size is 
two in the spatial direction and three in the temporal direction, is not 
necessarily the subset of the hyperlattice discussed in the previous sections. 
The spatial indices a and b, of course, correspond to the spatial indices in 
the last section, because they correspond to the lattice points in the original 
lattice L. The index/l also corresponds to the same index in the last section 
and specifies a vertex in a given site. However, the temporal indices in this 
section do not correspond to those in the last section. Here, they are 
merely labels introduced to distinguish one state vector from another. For 
example, n k stands for 4S one-bit variables n~k.i4,) (i=a, b; :t = 1, 2,..., 2S). 
The state Ink)2 is an eigenvector of the z-components of the Pauli 
operators, i.e., 

trot , Ink)2 = (2n(k.i./,)--1)Ink)2 (4.1) 

Defining lk as a set of two sites with the temporal index k, i.e., 
{(k, a), (k, b)}, we can rewrite nk as n(lk). We will use this notation in what 
follows. 

Other useful tools for the discussion are the operators whose matrix 
elements are given by the 3 functions defined in Section 3.2. We define an 
operator z~(G(p)) by 

(n(lt(P))l A(G(p)) In(lb(p)) ) 2 -- zl(n(p), G(p)) (4.2) 

Here, It(p) and lb(p) are the top and bottom links of the plaquette p as 
defined in Section 3.2. The operator ~(G(p)) depends on p only through 
it(p) and i)(p) and does not depend on the temporal index k. 

To outline the proof before going into its detail is useful. We will 
introduce an operation called the contraction of two graphs in such a way 
that the product of two operators ~a and z~ a, is ~a,, multiplied by a scalar 

P p 

factor, where G" is the graph resulting from tlae contraction of Gp and G~. 
In other words, the contraction of two graphs corresponds to multi- 
plication of two operators. This relationship enables us to discuss the 
nature of the operators in a graph-theoretic language. The most important 



Generalized Fortuin-Kasteleyn Transformation 199 

feature that we will prove is that a set of operators O* is closed with 
respect to multiplication. Here, the asterisk stands for XY,  FH, FAH, F, 
or AF, corresponding, respectively, to XY-like, isotropic-ferromagnetic, 
isotropic-antiferromagnetic, ferromagnetic-Ising-like, or antiferromagnetic- 
Ising-like anisotropy, and O* is the set of operators 6, which can be 
expressed as a sum of elements of F* multiplied by some nonnegative 
coefficients v(G(p)). Formally, 

0 * - { 6  3v(G(p))>~O[6=G<:>~ro<p)V(G(p))A(G(p))l} (4.3) 

The sets of graphs F* are the ones defined in Section 3.3. Then, we can 
show that p in (3.12) belongs to one of these sets of operators because 
(1) the product of projection operators in (3.12) belongs to all the above 
sets of operators, (2)all the operators A(/l, v) in (3.13) become elements of 
one of the above sets of operators when a scalar operator x[  is added to 
them ([ is the identity operator and x is some real number), (3)all the 
above sets of operators are closed with respect to the multiplication of two 
elements, the multiplication of an element by a nonnegative real number, 
and the addition of two elements, (4) the number of graphs which 
correspond to distinct A operators is finite, and (5)the Taylor expansion 
series of p with respect to Kp converges. In short, we will show that a set 
of nonnegative coefficients v(G(p)) exists that satisfies 

p = ~. v(G(p)) A(G(p)) (4.4) 
G ( p )  ,m F *  

When expressed as an equation between matrix elements, (4.4) reduces to 
(3.30). 

4.1. The XY-Like Anisotropy (IApl ~< 1 } 

The first step in proving the statement (4.4) in the case where 12p[ ~< 1 
is to note the following identity: 

..t(I.t, v) = cr ,,,,,ah, , + a o.,,ab, , + 

= - 1  + (1 + 2) A(/z, v) + (1 - 2)/}(p, v) (4.5) 

where A and/~ are operators defined by 

(n(l=)l A(/~, v)In(ll))2 
= ~(n<2.,,.,,), n<l,b,,)) c~(n<2,b.,), n<l.o./,)) 

x 1-[ c~(n<2 .... ), n<l .... ~) ~(n<2.b.a~, n<l.b.al) (4.6) 
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(n(/2)l ~(/1, v) 1"(/,)>2 

= 6(~(2.,,,~,), n(2.t,.~)) 6(n..,,,.), r~(,,~,~)) 

• I-[  r . . . .  ), nil .... )) ~(nt2,b,#),  n ( l ,b , : ) )  (4.7) 
p~,v 

Here, the symbol a denotes 1 - n. It is easy to see that the operator ,,i(/t, v) 
can be expressed as 

A(/~, v) - 3(A(/~, v)) (4.8) 

where A(/I, v) is a graph shown in Fig. 7a. Similarly, for the operator/~(u.v) 
we have 

/~(/1, v)--3(B(/1, v)) (4.9) 

with the graph B(/~, v) shown in Fig. 7b. 

(2,a, 1)(2,a,2)(2,b, I)(2,b,2) 

(a) S~(p)~  - / / ~ I s ~  ) 

A(2,1)= ~ 

(b) stl(p) ~ ......... .?S~p) 

B(2'I)= L .  . ~  

Sb~) ~ .......... Sb~LD) 

Sbr (p ) (~  . . . . . . . . . .  ~ Sbl(P) 

Fig. 7. Examples for the graphs which define (a) .4, (b)/~, (c) d', and (d)/~ in the case of 
S = 1. The Hamiltonian of the XXZ model can be expressed as a sum of these four types of 
operators. For models with XY-like anisotropy, graphs of type (a) and (b) are sufficient to 
express the Hamiltonian, whereas (b) is replaced by (c) in the case of ferromagnetic Ising-like 
anisotropy and by (d) in the case of antiferromagnetic Ising-like anisotropy. The ovals are 
sites, the solid circles are vertices, and the curves are edges. In the graphs for the XXZ models, 
all spatial edges are "red" and all temporal edges are "green." 
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Using the identity (4.5), we can rewrite the exponential operator in 
(3.13) as 

= exp ~Kp E [ -- 1 + (1 + 2p) .~(/.t, v) + (1 -- 2p)/~(/.t, v)] } 

=exp(-KpS2)exp {-~l,~ [(l + 2p) A(Iz, v)+(1-2p) l~(It, v)] } (4.10) 

The exponent of the last factor 

Kp ~ [(1 + 2p),~(/z, v)+(1 -2p)/~(/t, v)] 
4 b/,V 

(4.11) 

is an element of 0 xY because Kp, 1 + 2p, and 1 - 2 p  are nonnegative and 
0 xr is obviously closed with respect to the addition of two elements and 
the multiplication of an element by a nonnegative number. Additionally, 
both A(p, v) and B(/~, v) belong to FXr(p), or equivalently, A(p, v) and 
/~(p, v) belong to 0 xr. 

On the other hand, matrix elements of the projection operators in 
(3.12) can simply be written in the following form: 

(n(12)l P~Pb In(l])>2 

1 2S 
= E I-I ~(n(2 . . . .  ~)), n(1.a,,u)) ~(//(2,b,n'(p)), r/iI,b,u)) (4.12) [(2S)~] 2 

where zc and re' stand for permutations of the set { 1, 2,..., 2S} and the 
summation is taken over all possible permutations. Therefore, this product 
of projection operators can be viewed as a sum of A operators for which 
the graph consists of 4S green vertical edges which connect (1, a,p) to 
(2, a, rr(/l)) and (1, b,/~) to (2, b, zt'(/~)). Therefore, the operator P~Pb 
belongs to all five sets of operators defined in (4.3). To summarize, we have 
shown that/~ in (3.17) can be expressed in the form 

/~ = l~eeI ~ (4.13) 

with two elements ,~ and 1 ~ of 0 xr. 



202 Kawashima and Gubernatis 

We now consider an arbitrary set F(p) of graphs defined on a plaquette 
p and its two arbitrary elements, G~ and G2. If there exists an element G in 
F(p) for which 

A(G]) z~(G2) = 2"A(G) (4.14) 

holds with some nonnegative integer m, we call ['(p) closed with respect to 
multiplication. With this definition, we will prove the following statement: 

L e m m a  1. FXr(p) is closed with respect to multiplication. 

If we assume Lemma 1, it is obvious that 0 xr defined in (4.3) is closed 
with respect to multiplication. 

We first assume that the above lemma is true and show that p 
expressed in the form (4.13) belongs to 0 xr. To this end, we consider the 
Taylor expansion of exp(A ~) with respect to ~. We then neglect the terms 
of the ( n+  1)th order and higher. The kth-order term in the Taylor 
expansion is (1 /k!)~  >k and obviously belongs to 0 xr. So does the 
kth-order term of/~, i.e., (I /k!)  1~"1~. Thus the nth-order approximant of 
/3 also belongs to 0 xr. In other words, the operator /~ in (3.12) can be 
approximated up to the nth order by/3 I') ~ 0 xv. Namely, 

fi ~fi(,,) = ~ vI")(G(p)) A(G(p)) (4.15) 
G(p) �9 rXY~t~) 

with nonnegative coefficients v~")(G(p)). Here we note that the number of 
distinct elements of FXr(p) is finite. We also note that the series v(")(G(p)) 
(n = 1, 2, 3,...) is monotonically convergent to a nonnegative value because 
the contribution from each order term to oI")(G) is nonnegative. These facts 
and (4.15) make it obvious that in the limit ofn--+ ~ the operator :(") can 
still be expressed in the form (4.15), i.e., it belongs to 0 xr. Thus we get the 
following theorem: 

T h e o r e m  1. If I),pl is not greater than unity, the operator/~ can be 
decomposed into a sum of A operators of the form 

p = ~ v(G(p)) A(G(p)) (4.16) 
G(p) �9  FXY(p) 

with nonnegative coefficients v(G(p)). 

Taking the matrix elements of the both sides of the above equation, we 
have 

w(n(p)) = ~ v(G(p)) A(n(p), G(p)) (4.17) 
G(p) �9 FXY(p) 

This is the statement that we wanted to show for XY-like anisotropic 
models. 
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4.2. Contraction Operation and Proof of Lemma 1 

Now we prove Lemma 1. We consider two arbitrary elements G~ and 
G2 xr  of [ ' p  . Since ,~(G~) and z~(G2) do not depend on a particular plaquette, 
as we discussed above, we assume that G1 is defined on p~ - / I t3 12 and G 2 

onpE=- lE Ul3  (see Fig. 8). 
Using (3.27), we can express the matrix element of zJ(G2)z~(Gl) as 

(n(13)l 3(G2) zJ (Gi )  In(/1))2 

= ~ (n(%)l 3(G2) In(/.,))., (n(/2)l 3(Gx)In(l,))2 
n(/2) 

= ~. ,d(n(p2), G2) 3(n(pl), Gl) 
n(12)  

= ~. zJ (n(13wl2wl] ) ,  G l wG2) (4.18) 
n(12)  

Any cluster in the union G~ w G2 is a single path because a vertex in l~ can 
only be an endpoint of one and only one of the edges in G I ,  a vertex in 
l 3 c a n  only be in G2, and a vertex in l 2 is shared by an edge in G] and 
another in G2. Therefore, the clusters (in this case, paths) have the 
following properties: 

Property  1. The vertices on the top link (la) and on the bottom 
link (/~), which correspond to (3, i,/~) and (1, i,/~), are endpoints of paths. 
They cannot be intermediate points. 

Property 2. The vertices on the middle link (/2), which correspond 
to (2, i, ~t), are intermediate points of paths. They cannot be endpoints. 

-I 
~ contracl,_ 2• l 

i i 

G 

Fig. 8. Two graphs G~ e FXr(pt) and G, El'Xr(p2) and their contraction resulting in a 
graph G with a factor two. The factor comes from the small loop in the right middle part of 
the graph on the left-hand side. 
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Property 3. If an edge belongs to the lower graph (G,), the 
adjacent edge(s) in the same path belongs to the upper graph (G2), and 
vice versa. 

These elemental properties lead to the following properties: 

Property 1'. A temporal edge can appear only as the first or the 
last edge in a path. 

Property 2'. A spatial edge can appear only as the intermediate 
edge in a path. 

From Property 3, the following properties are derived: 

Property 4. The length of any loop is even. 

Here, the length of a path is the number of its edges. Similar to 
Property 4, for an open spatial path we have the following property: 

Property 5. The length of any open spatial path is odd. 

This is because the first and the last edges in such an open path belong 
to the same graph (GI or G2). For the same reason, we have the following: 

Property 6. The length of any temporal path is even. 

Using (3.28), we can express the matrix elements (4.18) in terms of 
contributions from these paths as 

(n(/3)[ z~(G2) J(Gt)  [n(/1))2= Y', l-[ zi(n(Vp), P) =1--[ f (P )  (4.19) 
n(12) P P 

where P stands for a path, Vp is the vertex set of P, and f(P) is the 
contribution from the path P defined by 

f(P)-- ~ A(n(Ve),P) (4.20) 
n( Ve c~12) 

Note that the paths P in (4.19) can be classified into three categories: 
(1)loops, (2) open spatial paths, and (3)open temporal paths. In what 
follows, we discuss contributions from these three types of paths separately. 

We first consider the contribution in (4.19) from loops, i.e., f(P) for a 
loop P. Because there are no endpoints, all vertices are on the middle link 
12 (Property 1). Therefore, all edges are red because of the definition of 
FXXZ(p). Hence, we can write the contribution from a loop P whose length 
is 2m (Property 4) in the following way: 

f ( P )  = ~] E...ZO(nf, a~)5(a~,n~)...5(n~,,_,,~,,)5(~,nf) (4.21) 
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where nip is the value of the one-bit func t ion ,  on the ith vertex in the path 
P. The product of the ~ functions is nonzero if and only if 

P - P  n l - - n  2 . . . . .  n~, (4.22) 

Therefore, a contribution from a closed path is a mere numerical factor of 
2, i.e., f ( P )  = 2. 

Next we consider the contribution from a spatial path. If the length of 
the path is one, the edge must be spatial and there is no intermediate 
vertex. Therefore, the contribution is g(n~', 1i~) and we will assume the 
length is larger than one. For such a path, the first and the last edges are 
temporal and all others are spatial, because of Properties 1 and 2. The con- 
tribution can then be written as 

4 4 P n 2 m  - I 

- . .  ~ (n~ ._  2, ~ _ , ) ~ ( ' ~ m - , ,  '~m) 
= 5(n~, rize,,) (4.23) 

Therefore, by tracing out the intermediate variables, this path is trans- 
formed into a red spatial edge in the resulting graph, whether the length is 
one or larger. 

Finally we consider the contribution from a temporal path. In this 
case, the first and the last edges are temporal as the previous case. All other 
intermediate edges are spatial. Since the length is even (Property 6) in this 
case, the contribution is 

f(x,) = E Y . . .  Z ~(n';, n~) ~(,,f, ,~'2) ~(,~, "2) 
4 4 .~. 
�9 . . ~ ( ~ , , , _ l , n ~ . , ) O ( n ~ , , ,  n2,,,e + ,) 

= 6(n~, n f,,, + ]) (4.24) 

Hence the contraction results in a green vertical or green diagonal edge, 
i.e., a green temporal edge. In Fig. 8, we can see examples of the three types 
of contribution we have discussed. 

Thus we have shown that the right-hand side of (4.19) is a product of 
three kinds of factors: (1) the numerical factor 2 m, where m is the number 
of loops, (2) the factor which corresponds to antiferromagnetic edges, and 
(3) the factor which corresponds to ferromagnetic edges. Hence Lemma 1 is 
proven. 
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In this subsection, we traced out the intermediate variables to obtain 
a new A function with a multiplicative factor. As illustrated in Fig. 8, it can 
be done graphically by ( 1 ) erasing intermediate vertices, (2) replacing open 
paths by edges with the same color, and (3) replacing each loop by a factor 
2. In what follows, we call this graphical operation a contraction. 

4.3. A Numer ica l  M e t h o d  to Compute  the Coef f ic ients  V(Gp) 
The discussion based on the Taylor expansion that led to (4.15) 

provides us not only a proof of Theorem 1, but also a numerical method 
for computing v(G)- lim . . . .  v'nl(G). What we have to do is: 

1. Make a table of the multiplication rules among the elements of 
FXr(p), i.e., a table which tells us which graph and what scalar 
multiplicative factor results from contraction of two arbitrary 
graphs in Fxr(p). 

2. Compute the Taylor expansion of the exponential operator in 
(4.10) up to the nth order using the table. 

3. Compute the result of multiplication of the projection operators. 
Or, equivalently, symmetrize the expression obtained in the last 
procedure with respect to the vertex indices. 

Considering the fact that expansion series of an exponential function of 
bounded matrices such as (4.10) generally converges quickly, the v(")(G(p)) 
in (4.15) should be a good approximant for v(G(p)) with not too large n. 
We remark that the above procedure does not become combinatorially dif- 
ficult as n increases. The amount of computation is only proportional to n. 
Therefore, this procedure to compute the coefficient is reasonably practical, 
although it may not be optimal. We also remark that the above procedure 
applies to other types of anisotropy to be now discussed. 

4.4. The Isotropic Cases (IApl = 1 ) 

We now consider the special cases where 2p = 1 or 2p = - 1 .  These 
cases have already been considered in the last subsection. However, we 
take up these cases separately because the set of graphs we must consider 
for the expression (4.16) is truly smaller than FXr(p). This reduction 
means that the set of graphs needed in the labeling process of the simula- 
tion can be simpler than in the general case. It will also be clear in the next 
section that in these special cases the coefficients can even be computed 
analytically without resorting to the numerical method discussed above. 
For the isotropic cases, the sets of graphs FFH(p) and FAVH(p) play the 
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same role as FXr(p)  did for the XY-like anisotropy. In what follows, we 
call a graph which belongs to FVH(p) a special ferromagnetic graph and 
one which belongs to FAVH(p) a special antiferromagnetic graph. 

We can show the following for the special ferromagnetic graphs: 

I_emma 2. FFH(p) is closed with respect to multiplication. 

It is sufficient to prove that the following property exists in the union 
graph defined on Pl uP2 :  

Property 7. Given a graph defined on two plaquettes sharing a 
link, if all edges in a path are ferromagnetic, the path is also ferromagnetic. 

As we did in the last subsection, we consider two plaquettes stacked on 
top of each other. In the present case, we consider a special ferromagnetic 
graph defined on each plaquette. To show Property 7, it is sufficient to 
prove that we can obtain only temporal paths from ferromagnetic edges 
and that those paths are green. Because of Property 1', any possible path 
in the stacked special ferromagnetic graphs consists of two temporal edges: 
one in the lower graph and the other in the upper graph. Therefore, the 
resulting path must be temporal. Because these two edges are both green, 
the resulting path is also green. Thus, Lemma 2 is proven. As a corollary, 
we can easily show that O TM is closed with respect to multiplication. 

A statement similar to Lemma 2 holds for the antiferromagnetic 
graphs: 

Lemma 3. FAFH(p) is closed with respect to multiplication. 

This is equivalent to the following statement. 

Property 8. Given a graph defined on two plaquettes sharing a 
link, if all edges in a path are antiferromagnetic, the path is also 
anti ferromagnetic. 

It is sufficient to prove that there are no diagonal or recurrent paths 
in the stacked special antiferromagnetic graphs and that all horizontal 
paths are red while all vertical paths are green. First, we assume that a 
path P is diagonal. Because all edges are either horizontal or vertical, we 
must then have an odd number of horizontal edges and two vertical edges 
in P. Therefore, the length of P must be odd. However, this contradicts 
Property 6, so there are no diagonal paths. Next, we assume that a path P 
is recurrent. With Che same reasoning as above, the length of P must be 
even. However, this contradicts Property 5, so no recurrent edge can 
appear. As for the colors of the resulting path, horizontal ones must be red 
while vertical ones must be green because of Lemma 1 and the fact that 
FAFH C X Y  p Fp . Thus, Lemma 3 is proven. It follows that O AFn is closed with 
respect to multiplication. 
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Because the graphs for the projection operators (4.12) belong to 
FFH(p), by using Lemma 2 and following the same line of argument that 
proved Theorem 1, we can expand the operator/~ in terms of ferromagnetic 
d operators: 

Theorem 2. The ferromagnetic operator/~ can be decomposed into 
a sum of d operators of the form 

= ~ v(G(p)) A(G(p)) (4.25) 
G(p)G FFH(p) 

with nonnegative coefficients v(G(p)). 

By the same argument, using Lemma 3, we have the following theorem 
for the antiferromagnetic operator/~: 

Theorem 3. The antiferromagnetic operator/3 can be decomposed 
into a sum of A operators of the form 

= ~ v(G(p)) A(G(p)) (4.26) 
G(p)  ~ FAFH(p) 

with nonnegative coefficients v(G(p)). 

4.5. The Fer romagnet ic  Ising-Like Anisot ropy  (h~> 1 ) 

In the case of Ising-like anisotropy, we cannot use expression (4.5) as 
a starting point, because the coefficient (1 - 2 )  may be negative. Therefore, 
instead of (4.5), we consider the following identity with positive coefficients 
as the new starting point for the ferromagnetic case (2 t> 1 ): 

o.x x - -  o-y v ,,.l, ab, v* a,,,,a-b,v+2a~,~a~.v= --2+2A(p, v)+2(2--  1) ~'(/z, v) (4.27) 

where the new operator d'(kt, v) is defined by 

(n(12) I C'(/t, v) 1n(11))2 

=~(nI2,a,a), r/tl ,a,l,)) O(nl2,b.v), nr ~(n(2,a,,u), n~l.b.v)) O(n~2.s.v), ntx,,,.,,)) 

x r-I 3(n~2 .... ), n~l .... )) 1-I 6(n~2.b.a), n~l,b,a)) (4.28) 
a#l~ fl#v 

The graph C(p, v) which expresses this operator is shown in Fig. 7c. With 
this graph, we can simply write ~(p, v)---A(C(p, v)). Obviously, the new 
graph does not correspond to any graph in FXr(p), because some of the 
vertices are shared by multiple edges. However, it still belongs to FxXZ(p). 
In fact, A(a, v) and C(p, v) both belong to FV(p) defined in (3.37). In what 
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follows, we call such a graph ferromagnet ic .  We also call the corresponding 
FH is that for F operator ferromagnetic. The difference from _Fp Fp there is 

no restriction on the number of edges sharing a vertex. 
For the ferromagnetic graphs, we can show the following statement: 

I . emma 4. FF(p) is closed with respect to multiplication. 

We will consider the contraction of these operators. We first take two 
ferromagnetic graphs stacked on top of one another. This time a cluster is 
not necessarily a path. In addition, not all the paths satisfy Property 3. We 
will call paths that satisfy Properties 1-3 alternating paths. For alternating 
paths all the properties (Properties 1-8) hold since Properties 4-8 are 
derived from Properties 1-3. In particular, Property 7 holds also for these 
alternating paths. It is important to notice that any ferromagnetic graph is 
equal to the union of all the alternating paths in it. Since the alternating 
paths overlap each other in the present case, additional considerations are 
needed to find the contribution from the paths when they are contracted. 
The result is, however, the same: a ferromagnetic alternating path contracts 
to a ferromagnetic edge. 

To see this, we resort to an example rather than rigorous argument. The 
example is shown in Fig. 9. In Fig. 9a, a typical graph is shown in the case 
of S = 1. There are three clusters in the graph. The result of the contraction 
is merely the product of corresponding three factors. Since the contribu- 
tions of the left and the right clusters are trivial, we focus on the middle 
cluster, whose vertex set is {Vo, v],/)2, /)3, /)4}" There are four alternating 
paths in this cluster. Their edge sets are {el, e3}, {el, e4}, {e2, e3}, and 
{e2, e4}. Correspondingly, the contraction of this cluster results in 

L ~(no, nl) ~(no, n2) ~(no, n3) ~(no, n4) 
no 

= ~. [6(nl, no) 6(no, n3) ][ 6(nl, no) d(no, n4) ] 
nO 

X [g(n2, no) 8(no, n3)] [g(n2, no) g(no, n4)] 

=~(nl ,  n3) 6(hi, n4) ~(n2, n3) ~(n2, n4) (4.29) 

where n i -  nv,. The last expression in the above equation is represented by 
Fig. 9b. It is easy to extract essential points from this example and con- 
struct a rigorous proof. Thus we obtain Lemma 4. 
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.v3 v4 

'Vl V2" 
Fig. 9. 

contract 
I t  

An example of contraction of two ferromagnetic graphs. 

Combining Lemma 4 and the expression (4.27), we obtain the following 
theorem: 

T h e o r e m  4. For 2 greater than or equal to 1, we can expand the 
operator ~ in the form 

= ~ v(G(p)) 2(G(p)) (4.30) 
G(pJe FF(p) 

with nonnegative coefficients v(G(p)). 

We can compute the coefficients v(G(p)) numerically in this case, too, 
by the procedure described in Section 4.3. The first step may seem impos- 
sible to do in the present case, where we have infinitely many distinct 
graphs. However, even if the number of graphs is infinite, it is still possible 
that the number of graphs which correspond to distinct A operators is 
finite. In such a case, by identifying all distinct graphs which give the same 
operator, we can keep the first step of the procedure manageable. In fact, 
the number of distinct A operators is finite in the present case. Therefore, 
the procedure discussed in Section 4.3 can apply. 

4.6. The Ant i ferromagnet ic  Ising-Like Anisotropy ( A ~ < - 1 )  

In this case, we start with the following identity: 

x x y y - - a..t, ab.v+a..,,ab, v+2a;.~,a;..=2+2~(p,v)+2(--2--1)lS(ll, v) (4.31) 
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where the new operator/)(kt,  v) is defined by 

(n(la)l/~(#, v) In(ll))a 
= ~(n(z,a.u), n~l,,,,/,)) 6(n(2.b,,), n<l,b,,)) 

x '~(n~1.,,,,5, a,,b,,5) 6(n~2,~,,5, a<2,o,,5) 

x r I  6(nt2 .... 5, n(l .... 5) 1--[ 6(nt2,b,#), ntl,b,#5) (4.32) 

The graph which expresses this operator is shown in Fig. 7d. 
In the last subsection, we defined FF(p) by removing the restriction 

on the multiple occupation of vertices from FVn(p). Similarly, in the 
present case, we consider a graph which consists of an arbitrary number of 
antiferromagnetic edges. Every vertex must be an endpoint of one or more 
edges. We call this type of graph antiferromagnetic and represent the 
set of the antiferromagnetic graphs by -F'AF(p). For the antiferromagnetic 
operators, we have the following lemma: 

Lemma 5. FAF(p) is closed with respect to multiplication. 

The proof can be done in the same way as the one in the last subsec- 
tion. In other words, using Property 8, we can show that all alternating 
paths in the graph G1 w G2 are antiferromagnetic. The contribution from 
each alternating path can be represented by an antiferromagnetic edge, 
unless the path is a loop. If the path is a loop which is connected to an 
open path, it contributes a factor 1. If the path is a loop which is not con- 
nected to any open path, it contributes a factor 2 together with all other 
loops connected to it. Therefore, contraction results in antiferromagnetic 
edges and numerical factors. Thus follows the lemma. 

Combining Lemma 5 and the expression (4.31), we obtain the following 
theorem: 

Theorem 5. For 2 smaller than or equal to - 1, we can expand the 
operator p in the form 

= ~, v(G(p)) A(G(p)) (4.33) 
G(p)  e FAF(p) 

with nonnegative coefficients v(G(p)). 

5. H E I S E N B E R G  M O D E L S  

In the isotropic cases, i.e., Iql--1, we can obtain compact formulas 
for the coefficients v(G(p)). To obtain this formula, we have to examine the 
nature of the coefficients in more detail. As we did in Section 2.4, we can 

822/80/I-2-14 
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classify local configurations into several categories by using symmetry 
properties. The function w(n(p)) has various symmetries: invariance under 
(1) the vertical and horizontal mirror-image transformation, (2) the 
simultaneous flipping of all spins, and (3)the permutation of vertices 
within each site. We define classes of configurations n(p) in such a way that 
two configurations n(p) and n'(p) belong to the same class if and only if 
they can be transformed into each other by these symmetry transforma- 
tions. We use symbol 6e(p) to specify such a class, which is a special set 
of states. For the same reason, we expect that the solution o(G(p)) pos- 
sesses the same symmetry, i.e., o(G'(p))= o(G(p)) if a graph G'(p) can be 
obtained from G(p) through these symmetry transformations. Therefore, it 
is convenient to define classes of graphs. We say that G'(p) belongs to the 
same class as G(p) if and only if G(p) can be transformed into G'(p) 
through the symmetry transformations. A class is a subset of FXXZ(p) and 
denoted by the symbol i ( p ) .  Note that 

U i(p)=r*(p) (5.1) 
f~(p)c F*(p) 

where the asterisk stands for XY, FH, AFH, F, or AF. Taking these defini- 
tions into account, we can reduce (3.30) to 

~,(~(p)) = ~ N(:(p), i(p)) ~(i(p)) (5.2) 
~F*{p) 

where 

and 

~(6:(p))  = w(n(p)), n(p) ~ 6a(p) (5.3) 

~( t (p) )  = v(G(p)), G(p) ~ t(p) (5.4) 

N(Y(p), i(p)) - ~. A(n(p), G(p)), n(p) E :(p) (5.5) 
G(p) �9 ~(p) 

We first note that the class of graphs if(p) is characterized by 16 
integers, mx,_x~ " (X1,X2=bl ,  br, tl, and tr). The integer mx,-x2 is the 
number of edges which connect vertices in the site Sx,(p) to vertices in the 
site Sx2(p). For example, mbl_tr is the number of vertical edges which con- 
nects a vertex in the bottom-left site and a vertex in the top-right site. In 
the case of ferromagnetic Heisenberg model, these integers vanish except 
fo r  mbl.t l ,  mbl_tr, mbr_tl, a n d  mbr_t r. Since there are constraints 

mbl.tl "[" mbl.tr  = mbr_t! "1- mbr_tr = mbl_tl -4- mbr_tl 

= mbl_t r + mbr_t r = 2 S  (5.6) 
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only one of the above four numbers is independent. Therefore, we take 
mbl_ o as the representative. Thus, we can simply express the coefficient 
~(fq(p)) as 

~(~(p)) = v(mbl_tl ) (5.7) 

Next, we notice that a class of configurations is characterized by four 
integers rob1, mb~, mtl, and mtr , where mb~ is the sum of vertex variables at 
the bottom-left site and the other three are similarly defined. This time, 
three of them are independent. We express the local weight function as in 
Section 2.4: 

W(Se(p))=#( mtl mtr / (5.8) 
\mbl mbr/ 

Using this notation, we can rewrite (4.25) as 

ff~(mti mtr'~= ~ NFH( mtl mtr mbl_tt)~(mb,_tl) 
\mbl mbr/ mbl.tl \mbl mbr 

(5.9) 

We now consider a configuration which belongs to a class charac- 
terized by (mtl, mtr, mbl, mbr) = (m, 2S-- m, 2S, 0). If a graph G is com- 
patible with this configuration, all m occupied vertices in the top-left site 
must be connected to vertices in the bottom-right site because all edges 
in the graph are temporal and green. For a similar reason, all 2 S - m  
occupied vertices in the top-right site must be connected to those in the 
bottom-right site. Therefore, we can easily see that the function N defined 
above must have the following property: 

( m 2 S - m  "~ {[0(2S)!]z 
Nv. 2S 0 mbl-tlJ = 

if mbi.tl=m (5.10) 
otherwise 

Having this equation, we can derive from (5.9) the following equation, 
which determines vvn completely: 

(m m) 
2S = [(2S)!]2 *7(m) (5.11) 

Using the identity (3.18), we finally get 

17(m) = 1 (2mS)-I [(2S)[]2 ((m, 2S--m I exp(--At Jt~.j) i2S, 0 ) )  (5.12) 
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Therefore, the problem has been reduced to the diagonalization of 
e x p ( - A r ~ , . j ) ,  a matrix in ( 2 S + 1 )  dimensions, which is numerically 
simple and also can be done exactly by various symbolic computational 
languages. 

Now, we will discuss the isotropic antiferromagnetic case. In this case, 
too, the class of graphs fg(p) is characterized by four integers, mbl_tl , mbr_tr, 
mb~_br, and mtl.t r. As in the case of the ferromagnetic Heisenberg model, 
only one of the above four numbers is independent. We express the coef- 
ficient fi(~J(p)) as 

~(fg(p)) = U(mbl.tl) (5.13) 

Equation (4.26) is rewritten as 

W( mtl mtrX) = ~, NAFH( mtl mtr mbl.tl) /~(mbl_tl) (5.14) 
\mbl mbr/  mbl.tl \mbl mbr 

We next consider a configuration which belong to a class charac- 
terized by (mtl,mtr, mbl, mbr)=(O,m,m,O). In this case, in any graph 
compatible to this configuration, all the m occupied vertices in the bottom- 
left site must be connected to vertices in the bottom-right site because we 
cannot connect them by green edges to the top-left site, where there are no 
occupied vertices. Hence, we obtain the following property of NAFn: 

(0m O "~ ( [ (2S) ' ]  2 if = 2 S - m  
NAVH mb'-t') = ~ 0 otherwise m bl-tl (5.15) 

Accordingly, we obtain 

(), ~ 1 2S ( ( 0 ,  ml exp( - -d r  J~/.j)Im, 0 ) )  (5.16) v(2S-m) = [(2/~)]] 2 m 

This is the generalization of (2.62). 

6. ERGODICITY 

Here we call an algorithm ergodic if an arbitrary state can be reached 
with a nonzero probability within a finite number of Monte Carlo steps 
regardless of the initial state. The ergodicity and the detailed balance con- 
dition are two important features that any Monte Carlo algorithm must 
possess. In the main text of this paper, we focused on the detailed balance 
condition and left out the discussion of ergodicity. It is sometimes non- 
trivial to show that an algorithm possesses this property. For example, the 
ergodicity of conventional algorithms has not yet been proven, as far as 
we know. However, for the new algorithm presented in this paper, it is 
almost straightforward to prove that ergodicity holds in the case of the 
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ferromagnetic and XY-like models, as we will see below. In the antiferro- 
magnetic models, we can show that the new algorithm is ergodic if the 
conventional algorithm is. 

The main part of conventional worldline algorithms is local loop 
flips where the size and shape of the loops are fixed. In order to achieve 
ergodicity, the shape and the location must be chosen carefully. Even if we 
choose them properly, however, using only local movements does not 
constitute an ergodic algorithm, because some quantities are conserved by 
these movements. (2~ Global winding numbers are such conserved quan- 
tities. Therefore, we have to include several different kinds of global 
updates that can change the winding numbers. What local updates and 
global updates we should include depend on the model. We always have to 
face this annoying question as long as we use the conventional algorithms. 
In fact, this difficulty also makes the actual computer programs com- 
plicated in order to accommodate different kinds of procedures. 

Now we prove the ergodicity of the new algorithm in the ferromagnetic 
and XY-like cases. To this end, we consider an arbitrary worldline con- 
figuration. If we note that any worldline consists of vertical line segments 
and diagonal ones, it is easy to realize that in a labeling process a loop 
configuration can be generated with a finite probability in such a way that 
any worldline in the initial state coincides with one of the loops in the loop 
configuration. (Of course this coincidence is possible only in the case of 
ferromagnetic or XY-like systems where graphs with diagonal edges can be 
chosen.) Once such loops are formed, in the subsequent flipping process, 
it can happen that all existing worldlines vanish (flip) and no new world- 
lines are created. The outcome is the vacuum state. Thus, within one 
Monte Carlo step, the vacuum state can be reached from an arbitrary state. 
The inverse process can also take place with a finite probability, i.e., the 
transition from the vacuum state to an arbitrary state. Therefore, we can 
conclude that every state can be reached from any state within two Monte 
Carlo steps via the vacuum state. Thus, ergodicity is proven. 

This proof was possible because vertical and diagonal segments appear 
in the graphs corresponding to the operators/ '  and ,4 in the decomposition 
(4.5) and (4.27). Since the decomposition (4.31) does not contain the 
operator ,~, the ergodicity of the antiferromagnetic model is not obvious. 
However, we can argue that if conventional algorithms are ergodic, the 
new algorithm is also ergodic. We can see this simply by noticing that most 
global flips introduced in the conventional algorithms can happen in the 
new algorithm with finite probability. To be more specific, the n-direction 
global flips in ref. 20 are simply flipping of loops with the temporal winding 
number 1, and the x-direction global flips are those of loops with spatial 
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winding number 1. Both types of loops can form in the new algorithm. The 
t-direction global flips are equivalent to flipping of loops whose temporal 
and spatial winding numbers are 1, as far as the effect on the global 
winding numbers is concerned. Again, this type of loop can form in the 
new algorithm. 

Here, we emphasize that these global movements are intrinsically 
included in the new algorithm and they do not introduce any additional 
complication into the algorithm. In other words, we can achieve ergodicity 
in a simple and systematic way in the new algorithm, in contrast to the 
conventional algorithms. 

7. S U M M A R Y  

In this paper, we described how the Boltzmann factor of the lattice 
quantum spin model can be decomposed into a sum of terms each of which 
corresponds to a graph. Based on this decomposition, we have shown that 
a nontrivial cluster algorithm exists for any quantum spin model which can 
be described by this Hamiltonian, regardless of geometrical properties of 
the original lattice such as the number of dimensions, the boundary condi- 
tion, and the range of the interactions. This decomposition also determines 
how to choose the proper set of local graphs and how to assign one of 
them to each plaquette. The new algorithm is advantageous for several 
reasons: (1)i t  may reduce the autocorrelation time drastically, (2)with the 
improved estimators, (]9) it can reduce variances of distribution functions 
of important physical quantities and therefore reduce the statistical error, 
(3) it can achieve ergodicity without introducing any adhoc global 
updates, and (4)the resulting computer programs can be simpler than 
those for the conventional algorithms. For some cases, such as the Ising 
model and the S = 1 antiferromagnetic, we explicitly gave the labeling prob- 
abilities that determine the Monte Carlo algorithm. For the general case, a 
method for computing the labeling probabilities numerically was presented. 

Our representation can be viewed as the extension of the FK cluster 
representation of the Ising model. Therefore, the resulting Monte Carlo 
algorithms are generalizations of the SW algorithm to the quantum spin 
problems. As we showed in ref. 7, the present scheme reduces to the SW 
algorithm in the limit of strong Ising-like anisotropy. The present algo- 
rithm also includes the loop algorithm for the S =  1/2 model. ~]5) 

It is remarkable that in contrast to the conventional algorithm, the 
cluster algorithm must be quite different, depending on the anisotropy of 
the model. For the XY-like anisotropy, we can have a loop algorithm. 
A loop algorithm is advantageous because we can identify loops in a com- 
putational time proportional to the number of vertices Nv = 2SM ILl. For 
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the Ising-like anisotropy, we inevitably create clusters with branching. In 
this case, the computational time is proportional to Nv log(Nv). 

Although the efficiency of the algorithms has not yet been demonstrated 
systematically, some encouraging facts are already known. The efficiency of 
the SW algorithm near a critical point is well known. Other examples are 
the efficiency of the algorithms for the S = 1/2 antiferromagnetic Heisenberg 
model (16) in two dimensions and S =  1 antiferromagnetic Heisenberg model 
in one dimension/7) In the latter, the autocorrelation time was at least three 
orders of magnitude smaller than that of the conventional method. The 
difference tends to be greater for large Trotter numbers. We also found that 
the present algorithm dramatically reduces the autocorrelation time of the 
S =  1/2 X Y  model in two dimensions, which is equivalent to the hard-core 
boson model. This result will be published elsewhere, t21) Based on these 
findings, we believe that for the homogeneous XXZ spin model without a 
symmetry-breaking field such as a magnetic field, the present algorithm 
provides a more efficient alternative to the standard local Metropolis algo- 
rithm. On the other hand, we know much less about the efficiency of the 
algorithm for disordered system and systems with symmetry-breaking fields. 
As for disorder, it is known ~3) that the SW algorithm is not advantageous 
for the random-bond Ising model, i.e., the Edwards-Anderson spin-glass 
model. As for the effect of the symmetry-breaking field, we empirically found 
in the case of S = 1/2 models in two dimensions that the algorithm works 
well for the Ising model regardless of the strength of a magnetic field, 
whereas it does not for the X Y  model when the field in the z direction is 
strong, t22) More work is needed for these cases. 

APPENDIX.  THE COMPLETELY ANISOTROPIC CASE- -  
THE X Y Z  MODEL 

Since the case where Jx = Jy is much more frequently studied than 
completely asymmetric case where Jx V~Jy #Jz  #,Ix, we focused on the 
XXZ model in the main text to avoid too much complication. However, 
the XYZ  model can be treated in a fashion similar to that presented for the 
XXZ model. In this appendix, we give a brief outline of the algorithm for 
the X Y Z  model. A more detailed discussion will be given elsewhere, t22) 

We first note that 

Ko'+ Kxa~a x + Kya~,a~ + K~a~a~ 

K 2 K 3 0 
= - K,.,,~.K~.K,(a, V) 

K3 K2 0 

K 4 0 0 K ] /  

(A1) 



218 Kawashima and Gubernatis 

where 

Kt  - Ko + K . ,  K2 - Ko -- K.., K3 - K~ + Ky ,  K4 - Kx  - K,, (A2) 

Here the constant K o is irrelevant, i.e., its value does not affect the result. 
We introduce it for appearance. We also define WKj.K2.x3.r~ as the absolute 
value of the matrix element o f p  which is defined by (3.12) and (3.13) with 
,~(~, v) replaced by AK, r2.x3.K,(/I, v). We then can show, by almost the 
same argument as we presented to show (3.16), that 

WK.  r2.K~.K4 = Wry,K2,- -K3,~ = WK.K..K3,--K4 = WK,,K2,--K3,--K, (A3) 

This generalizes (3.16). Because of (A3) we can assume nonnegative values 
for K 3 and K4 without loss of generality. We can also assume nonnegative 
K~ and K 2 because we can take as large a value as we want for the irrele- 
vant constant K0 without changing final result. Therefore, we assume that 
all the constants are nonnegative. 

For the X Y Z  model, we consider ten types of graphs (Fig. 10) instead 
of the four types in Fig. 7 for the X ' X Z  model. We denote these graphs as 
G X ( p , v )  where X=(1 ) ,  (2), (3), (4), (12), (13), (14), (23), (24), and (34) 
as indicated in Fig. 10. Here, we omit the index p specifying a plaquette. 

G 02) G 03) G (23) 

G (34) G(24) Go4) 

G(~) G(2) G(a) G (4) 

Fig. 10. Ten types of graphs for the decomposition of the local Boltzmann factor of the X Y Z  
model. For clarity, two green vertical edges which connect leftmost vertices and rightmost 
vertices in each graph are not drawn. 
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We note that the graphs for the four operators discussed for the XXZ 
model can be rewritten in this notation as 

A([2, v ) =  G~l'3)(kt , v) 

B(/~, v ) =  G(2"3)(kt , v) 

C(/~, v) = G~l~(p, v) 

D(/.t, v ) =  G~'-~(/~, v) 

The decomposition of the Hamiltonian which is analogous to (4.5), (4.27), 
and (4.31) is 

AK,.x,.x3.~( ~, v) = ~ ax,~(GX(p, v)) (A4) 
X 

where the undetermined variables ax must be nonnegative. There is at least 
one nontrivial solution to this equation. In fact there are many in general. 
Which solution gives the most effective algorithm has not been studied 
extensively. A more detailed discussion about the solutions of (A4) will be 
presented elsewhere. 

We should point out that the matrix element of (A1) can be viewed as 
the vertex weight of an eight-vertex model with symmetry with respect to 
simultaneous inversion of all arrows. Therefore, the solution of Eq. (A4) 
gives us a cluster algorithm of an eight-vertex model as well as the founda- 
tion for the cluster algorithm of the XYZ model. A similar remark applies 
to the XXZ model, where the S = 1/2 problem was a special case of the six- 
vertex model. 

Here we will only give a relatively simple but useful example of the 
solution of (A4) instead of listing all possible solutions. We consider 
the homogeneous system where the coupling constant does not depend on 
the location. We also assume, without loss of generality, that 

Ig=l >1 Igxl/> Ig,,I >10 (A5) 

(If this is not the case, we can "rotate" the space of spins so that the above 
inequality holds.) We consider only the case where K: > 0. We can do this 
when the original lattice is bipartite. Furthermore, because of (A3) and 
(A5), we can assume that K x/> 0 without loss of generality. With these 
assumptions, we obtain a solution 

al = K i  - K 2  - K 3  - - K 4  = 2(K: --Kx) 

ac 12) = K2 = 0 

a~l~)=K3=K~+Ky 

a~14)=K,=g.,-Ky 
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Correspondingly, (A4) becomes 

AK,,K2.x,,~(~, v) = 2(K~-  Kx) 3(G(l)(/l, v)) 

+ (K x + Ky) 2(G('3)(/~, v)) + (K, - Ky) 3(G(")(/z, v)) 

(A6) 

Here we have chosen K0 = Kz. 
In Section 4 we gave an graph-theoretic argument to show the closure 

of various sets of graphs with respect to multiplication. By a similar argu- 
ment, we can show that 1 -'Fxrz is closed with respect to multiplication. 
Here 1"~, xrz is defined by 

FFXYZ(p) = { G I VG = p, and "All edges in G are green"} (A7) 

We note that 

Fvxrz(p  ) n F XXZ(p ) = FV (p ) (A8) 

Following the same line of argument as the one in the main text, we can 
conclude that a set of nonnegative variables exists that satisfies 

PKhK2oK3,K4 = Z v(G(p)) 2(G(p)) (A9) 
G(p) ~ rFxrZ(p) 

This, of course, leads to a cluster algorithm for the X Y Z  model with K_, t> 
g~> Igyl/>0. It is straightforward to calculate v(G(p)) analytically for 
small values of S. We note that one useful application of this type of algo- 
rithm is to the X Y  model with the x-representation basis, i.e., the represen- 
tation basis in which the x components of spins are diagonalized. This is 
useful because by this representation we can calculate the two-point 
correlation between in-plane spin components. This correlation may be 
more interesting to study than the correlation between out-of-plane com- 
ponents which can be calculated with the z-representation basis. 
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